方差膨胀系数
共线性
多重共线性
先验概率
贝叶斯概率
贝叶斯线性回归
后验概率
统计
计量经济学
贝叶斯因子
数学
差异(会计)
贝叶斯分层建模
计算机科学
贝叶斯推理
回归分析
经济
会计
作者
A. George Assaf,Efthymios G. Tsionas
标识
DOI:10.1177/1096348021990841
摘要
Testing for collinearity continues to be a controversial issue in the literature. Multicollinearity detection criteria, such as the variance inflation factor, often fail to detect the true extent of multicollinearity. In this article, we propose utilizing the Bayesian approach as an attractive alternative. Under the Bayesian approach, we recommend comparing the marginal posterior of regression parameters under two different priors. If the difference in the posterior under these two priors is pronounced, one can surmise that collinearity is harmful. The Kolmogorov–Smirnov test can also be used as further evidence to confirm whether the posterior difference is significant.
科研通智能强力驱动
Strongly Powered by AbleSci AI