A Deep Learning-based Method to Extract Lumen and Media-Adventitia in Intravascular Ultrasound Images

豪斯多夫距离 雅卡索引 基本事实 人工智能 分割 血管内超声 管腔(解剖学) 计算机科学 深度学习 特征(语言学) 棱锥(几何) 模式识别(心理学) 计算机视觉 医学 数学 放射科 内科学 几何学 哲学 语言学
作者
Fubao Zhu,Zhengyuan Gao,Zhao Chen,Hanlei Zhu,Jiaofen Nan,Yanhui Tian,Yongkang Dong,Jingfeng Jiang,Xiaohong Feng,Neng Dai,Weihua Zhou
出处
期刊:Ultrasonic Imaging [SAGE]
卷期号:44 (5-6): 191-203 被引量:24
标识
DOI:10.1177/01617346221114137
摘要

Intravascular ultrasound (IVUS) imaging allows direct visualization of the coronary vessel wall and is suitable for assessing atherosclerosis and the degree of stenosis. Accurate segmentation and lumen and median-adventitia (MA) measurements from IVUS are essential for such a successful clinical evaluation. However, current automated segmentation by commercial software relies on manual corrections, which is time-consuming and user-dependent. We aim to develop a deep learning-based method using an encoder-decoder deep architecture to automatically and accurately extract both lumen and MA border. Inspired by the dual-path design of the state-of-the-art model IVUS-Net, our method named IVUS-U-Net++ achieved an extension of the U-Net++ model. More specifically, a feature pyramid network was added to the U-Net++ model, enabling the utilization of feature maps at different scales. Following the segmentation, the Pearson correlation and Bland-Altman analyses were performed to evaluate the correlations of 12 clinical parameters measured from our segmentation results and the ground truth. A dataset with 1746 IVUS images from 18 patients was used for training and testing. Our segmentation model at the patient level achieved a Jaccard measure (JM) of 0.9080 ± 0.0321 and a Hausdorff distance (HD) of 0.1484 ± 0.1584 mm for the lumen border; it achieved a JM of 0.9199 ± 0.0370 and an HD of 0.1781 ± 0.1906 mm for the MA border. The 12 clinical parameters measured from our segmentation results agreed well with those from the ground truth (all p-values are smaller than .01). Our proposed method shows great promise for its clinical use in IVUS segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_84WJXZ发布了新的文献求助10
刚刚
rikii完成签到 ,获得积分10
刚刚
量子星尘发布了新的文献求助10
1秒前
roooosewang完成签到,获得积分10
1秒前
1秒前
1秒前
1秒前
搜集达人应助健达奇趣蛋采纳,获得10
1秒前
zzy完成签到,获得积分10
1秒前
晚阳应助bingbing采纳,获得30
2秒前
2秒前
2秒前
Ryo完成签到,获得积分10
2秒前
3秒前
夏冰发布了新的文献求助10
3秒前
3秒前
科研通AI6应助dongjingbutaire采纳,获得10
3秒前
传奇3应助DM采纳,获得10
3秒前
3秒前
整齐的爆米花完成签到 ,获得积分10
4秒前
4秒前
半个榴莲完成签到,获得积分10
4秒前
开朗的乐蕊完成签到,获得积分10
4秒前
5秒前
5秒前
维洛尼亚完成签到,获得积分10
5秒前
killerqu完成签到,获得积分10
5秒前
Hello应助Akaqqqi采纳,获得10
5秒前
zzy发布了新的文献求助10
5秒前
5秒前
楼十八发布了新的文献求助10
5秒前
5秒前
orixero应助单薄雪巧采纳,获得10
6秒前
归途关注了科研通微信公众号
6秒前
JamesPei应助费城青年采纳,获得10
6秒前
zqgxiangbiye发布了新的文献求助10
6秒前
6秒前
认真的傻姑完成签到,获得积分10
6秒前
7秒前
sghsh发布了新的文献求助10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667660
求助须知:如何正确求助?哪些是违规求助? 4887012
关于积分的说明 15121059
捐赠科研通 4826441
什么是DOI,文献DOI怎么找? 2584044
邀请新用户注册赠送积分活动 1538066
关于科研通互助平台的介绍 1496210