A Deep Learning-based Method to Extract Lumen and Media-Adventitia in Intravascular Ultrasound Images

豪斯多夫距离 雅卡索引 基本事实 人工智能 分割 血管内超声 管腔(解剖学) 计算机科学 深度学习 特征(语言学) 棱锥(几何) 模式识别(心理学) 计算机视觉 医学 数学 放射科 内科学 几何学 哲学 语言学
作者
Fubao Zhu,Gao Z,Chen Zhao,Hua Zhu,Dong Ye,Jingfeng Jiang,Neng Dai,Weihua Zhou
出处
期刊:Ultrasonic Imaging [SAGE]
卷期号:44 (5-6): 191-203 被引量:6
标识
DOI:10.1177/01617346221114137
摘要

Intravascular ultrasound (IVUS) imaging allows direct visualization of the coronary vessel wall and is suitable for assessing atherosclerosis and the degree of stenosis. Accurate segmentation and lumen and median-adventitia (MA) measurements from IVUS are essential for such a successful clinical evaluation. However, current automated segmentation by commercial software relies on manual corrections, which is time-consuming and user-dependent. We aim to develop a deep learning-based method using an encoder-decoder deep architecture to automatically and accurately extract both lumen and MA border. Inspired by the dual-path design of the state-of-the-art model IVUS-Net, our method named IVUS-U-Net++ achieved an extension of the U-Net++ model. More specifically, a feature pyramid network was added to the U-Net++ model, enabling the utilization of feature maps at different scales. Following the segmentation, the Pearson correlation and Bland-Altman analyses were performed to evaluate the correlations of 12 clinical parameters measured from our segmentation results and the ground truth. A dataset with 1746 IVUS images from 18 patients was used for training and testing. Our segmentation model at the patient level achieved a Jaccard measure (JM) of 0.9080 ± 0.0321 and a Hausdorff distance (HD) of 0.1484 ± 0.1584 mm for the lumen border; it achieved a JM of 0.9199 ± 0.0370 and an HD of 0.1781 ± 0.1906 mm for the MA border. The 12 clinical parameters measured from our segmentation results agreed well with those from the ground truth (all p-values are smaller than .01). Our proposed method shows great promise for its clinical use in IVUS segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
清话鹿酒发布了新的文献求助30
2秒前
上官若男应助leezcc采纳,获得10
2秒前
执着的日记本完成签到,获得积分10
3秒前
鸭鸭发布了新的文献求助10
4秒前
4秒前
星辰大海应助ANIVIA采纳,获得10
4秒前
ido完成签到 ,获得积分10
5秒前
5秒前
6秒前
害羞兔子完成签到,获得积分10
6秒前
幽壑之潜蛟应助小巧问芙采纳,获得20
7秒前
gtg完成签到,获得积分10
7秒前
7秒前
8秒前
10秒前
11秒前
11秒前
13秒前
善学以致用应助京阿尼采纳,获得10
13秒前
无缘发布了新的文献求助10
14秒前
阳光的梦寒完成签到 ,获得积分10
14秒前
15秒前
15秒前
ccc完成签到,获得积分10
15秒前
16秒前
18秒前
传奇3应助zhaoyuwei采纳,获得10
19秒前
19秒前
19秒前
丘比特应助swagger采纳,获得10
20秒前
13134发布了新的文献求助10
20秒前
无奈的冰姬完成签到,获得积分10
21秒前
21秒前
开心的梦龙完成签到,获得积分10
22秒前
tk完成签到 ,获得积分10
23秒前
聪慧小燕发布了新的文献求助10
23秒前
24秒前
高分求助中
中央政治學校研究部新政治月刊社出版之《新政治》(第二卷第四期) 1000
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
【港理工学位论文】Telling the tale of health crisis response on social media : an exploration of narrative plot and commenters' co-narration 500
Mantodea of the World: Species Catalog Andrew M 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3433948
求助须知:如何正确求助?哪些是违规求助? 3031147
关于积分的说明 8941083
捐赠科研通 2719166
什么是DOI,文献DOI怎么找? 1491676
科研通“疑难数据库(出版商)”最低求助积分说明 689372
邀请新用户注册赠送积分活动 685523