A Deep Learning-based Method to Extract Lumen and Media-Adventitia in Intravascular Ultrasound Images

豪斯多夫距离 雅卡索引 基本事实 人工智能 分割 血管内超声 管腔(解剖学) 计算机科学 深度学习 特征(语言学) 棱锥(几何) 模式识别(心理学) 计算机视觉 医学 数学 放射科 内科学 语言学 哲学 几何学
作者
Fubao Zhu,Zhengyuan Gao,Zhao Chen,Hanlei Zhu,Jiaofen Nan,Yanhui Tian,Yongkang Dong,Jingfeng Jiang,Xiaohong Feng,Neng Dai,Weihua Zhou
出处
期刊:Ultrasonic Imaging [SAGE Publishing]
卷期号:44 (5-6): 191-203 被引量:17
标识
DOI:10.1177/01617346221114137
摘要

Intravascular ultrasound (IVUS) imaging allows direct visualization of the coronary vessel wall and is suitable for assessing atherosclerosis and the degree of stenosis. Accurate segmentation and lumen and median-adventitia (MA) measurements from IVUS are essential for such a successful clinical evaluation. However, current automated segmentation by commercial software relies on manual corrections, which is time-consuming and user-dependent. We aim to develop a deep learning-based method using an encoder-decoder deep architecture to automatically and accurately extract both lumen and MA border. Inspired by the dual-path design of the state-of-the-art model IVUS-Net, our method named IVUS-U-Net++ achieved an extension of the U-Net++ model. More specifically, a feature pyramid network was added to the U-Net++ model, enabling the utilization of feature maps at different scales. Following the segmentation, the Pearson correlation and Bland-Altman analyses were performed to evaluate the correlations of 12 clinical parameters measured from our segmentation results and the ground truth. A dataset with 1746 IVUS images from 18 patients was used for training and testing. Our segmentation model at the patient level achieved a Jaccard measure (JM) of 0.9080 ± 0.0321 and a Hausdorff distance (HD) of 0.1484 ± 0.1584 mm for the lumen border; it achieved a JM of 0.9199 ± 0.0370 and an HD of 0.1781 ± 0.1906 mm for the MA border. The 12 clinical parameters measured from our segmentation results agreed well with those from the ground truth (all p-values are smaller than .01). Our proposed method shows great promise for its clinical use in IVUS segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
吴吴吴发布了新的文献求助10
1秒前
1秒前
2秒前
song完成签到 ,获得积分10
2秒前
Aja Wu完成签到,获得积分10
3秒前
易达发布了新的文献求助30
3秒前
刘林美完成签到 ,获得积分10
4秒前
鹿茸与共发布了新的文献求助10
5秒前
金文龙发布了新的文献求助10
5秒前
CipherSage应助李霞采纳,获得10
5秒前
见雨鱼发布了新的文献求助10
6秒前
6秒前
6秒前
7秒前
7秒前
ll发布了新的文献求助10
8秒前
英吉利25发布了新的文献求助10
9秒前
望志青年完成签到,获得积分10
10秒前
10秒前
lalala发布了新的文献求助10
12秒前
12秒前
见雨鱼完成签到,获得积分10
15秒前
greenlu完成签到,获得积分10
15秒前
16秒前
16秒前
ding应助林八八采纳,获得10
16秒前
17秒前
19秒前
科研通AI5应助图图采纳,获得10
19秒前
control完成签到,获得积分10
21秒前
21秒前
lalala发布了新的文献求助10
22秒前
科目三应助北陆小猫采纳,获得10
22秒前
22秒前
繁荣的菲音完成签到,获得积分10
23秒前
yuan发布了新的文献求助10
23秒前
25秒前
26秒前
辣子鸡发布了新的文献求助10
26秒前
金文龙完成签到,获得积分10
26秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998724
求助须知:如何正确求助?哪些是违规求助? 3538169
关于积分的说明 11273611
捐赠科研通 3277151
什么是DOI,文献DOI怎么找? 1807423
邀请新用户注册赠送积分活动 883867
科研通“疑难数据库(出版商)”最低求助积分说明 810070