亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Evaluation of Tissue Binding in Three Tissues across Five Species and Prediction of Volume of Distribution from Plasma Protein and Tissue Binding with an Existing Model

微粒体 化学 血浆蛋白结合 分布(数学) 分配量 结合位点 药代动力学 体外 生物化学 生物 数学 生物信息学 数学分析
作者
Frederick Hsu,Yi‐Chen Chen,Fabio Broccatelli
出处
期刊:Drug Metabolism and Disposition [American Society for Pharmacology & Experimental Therapeutics]
卷期号:49 (4): 330-336 被引量:13
标识
DOI:10.1124/dmd.120.000337
摘要

Volume of distribution (Vd) is a primary pharmacokinetic parameter used to calculate the half-life and plasma concentration-time profile of drugs. Numerous models have been relatively successful in predicting Vd, but the model developed by Korzekwa and Nagar is of particular interest because it utilizes plasma protein binding and microsomal binding data, both of which are readily available in vitro parameters. Here, Korzekwa and Nagar's model was validated and expanded upon using external and internal data sets. Tissue binding, plasma protein binding, Vd, physiochemical, and physiologic data sets were procured from literature and Genentech's internal data base. First, we investigated the hypothesis that tissue binding is primarily governed by passive processes that depend on the lipid composition of the tissue type. The fraction unbound in tissues (futissue) was very similar across human, rat, and mouse. In addition, we showed that dilution factors could be generated from nonlinear regression so that one futissue value could be used to estimate another one regardless of species. More importantly, results suggested that microsomes could serve as a surrogate for tissue binding. We applied the parameters from Korzekwa and Nagar's Vd model to two distinct liver microsomal data sets and found remarkably close statistical results. Brain and lung data sets also accurately predicted Vd, further validating the model. Vd prediction accuracy for compounds with log D7.4 > 1 significantly outperformed that of more hydrophilic compounds. Finally, human Vd predictions from Korzekwa and Nagar's model appear to be as accurate as rat allometry and slightly less accurate than dog and cynomolgus allometry.

SIGNIFICANCE STATEMENT

This study shows that tissue binding is comparable across five species and can be interconverted with a dilution factor. In addition, we applied internal and external data sets to the volume of distribution model developed by Korzekwa and Nagar and found comparable Vd prediction accuracy between the Vd model and single-species allometry. These findings could potentially accelerate the drug research and development process by reducing the amount of resources associated with in vitro binding and animal experiments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
黄黄黄完成签到 ,获得积分20
1秒前
乐观的非笑完成签到,获得积分10
5秒前
9秒前
9秒前
乐乐应助坚守采纳,获得10
10秒前
科研通AI6应助zhdhh采纳,获得10
11秒前
信陵君无忌完成签到,获得积分10
11秒前
li发布了新的文献求助10
14秒前
领导范儿应助哦噢藕采纳,获得10
16秒前
樱桃汽水怪兽完成签到,获得积分10
17秒前
li完成签到,获得积分10
20秒前
张张完成签到,获得积分10
20秒前
24秒前
哦噢藕完成签到,获得积分10
26秒前
28秒前
明理的蜗牛完成签到,获得积分10
28秒前
CJY发布了新的文献求助10
29秒前
小马甲应助科研通管家采纳,获得10
32秒前
优雅的大白菜完成签到 ,获得积分10
34秒前
桐桐应助少年啊采纳,获得10
36秒前
老北京完成签到,获得积分10
38秒前
40秒前
koi完成签到,获得积分20
41秒前
43秒前
阿朱完成签到 ,获得积分10
44秒前
哦噢藕发布了新的文献求助10
48秒前
55秒前
tong童完成签到 ,获得积分10
55秒前
阿莫西林胶囊完成签到,获得积分10
1分钟前
LYL完成签到,获得积分10
1分钟前
1分钟前
Elsa完成签到,获得积分10
1分钟前
CipherSage应助浅呀呀呀采纳,获得10
1分钟前
Criminology34完成签到,获得积分0
1分钟前
1分钟前
学习要认真喽完成签到 ,获得积分10
1分钟前
平淡的翅膀完成签到,获得积分10
1分钟前
江逾白发布了新的文献求助10
1分钟前
Winter完成签到 ,获得积分10
1分钟前
CJY完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5639422
求助须知:如何正确求助?哪些是违规求助? 4748203
关于积分的说明 15006376
捐赠科研通 4797589
什么是DOI,文献DOI怎么找? 2563600
邀请新用户注册赠送积分活动 1522598
关于科研通互助平台的介绍 1482264