Evaluation of Tissue Binding in Three Tissues across Five Species and Prediction of Volume of Distribution from Plasma Protein and Tissue Binding with an Existing Model

微粒体 化学 血浆蛋白结合 分布(数学) 分配量 结合位点 药代动力学 体外 生物化学 生物 数学 生物信息学 数学分析
作者
Frederick Hsu,Yi‐Chen Chen,Fabio Broccatelli
出处
期刊:Drug Metabolism and Disposition [American Society for Pharmacology and Experimental Therapeutics]
卷期号:49 (4): 330-336 被引量:13
标识
DOI:10.1124/dmd.120.000337
摘要

Volume of distribution (Vd) is a primary pharmacokinetic parameter used to calculate the half-life and plasma concentration-time profile of drugs. Numerous models have been relatively successful in predicting Vd, but the model developed by Korzekwa and Nagar is of particular interest because it utilizes plasma protein binding and microsomal binding data, both of which are readily available in vitro parameters. Here, Korzekwa and Nagar's model was validated and expanded upon using external and internal data sets. Tissue binding, plasma protein binding, Vd, physiochemical, and physiologic data sets were procured from literature and Genentech's internal data base. First, we investigated the hypothesis that tissue binding is primarily governed by passive processes that depend on the lipid composition of the tissue type. The fraction unbound in tissues (futissue) was very similar across human, rat, and mouse. In addition, we showed that dilution factors could be generated from nonlinear regression so that one futissue value could be used to estimate another one regardless of species. More importantly, results suggested that microsomes could serve as a surrogate for tissue binding. We applied the parameters from Korzekwa and Nagar's Vd model to two distinct liver microsomal data sets and found remarkably close statistical results. Brain and lung data sets also accurately predicted Vd, further validating the model. Vd prediction accuracy for compounds with log D7.4 > 1 significantly outperformed that of more hydrophilic compounds. Finally, human Vd predictions from Korzekwa and Nagar's model appear to be as accurate as rat allometry and slightly less accurate than dog and cynomolgus allometry.

SIGNIFICANCE STATEMENT

This study shows that tissue binding is comparable across five species and can be interconverted with a dilution factor. In addition, we applied internal and external data sets to the volume of distribution model developed by Korzekwa and Nagar and found comparable Vd prediction accuracy between the Vd model and single-species allometry. These findings could potentially accelerate the drug research and development process by reducing the amount of resources associated with in vitro binding and animal experiments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7秒前
Likz完成签到,获得积分10
7秒前
不安的秋白完成签到,获得积分10
9秒前
清新的剑心完成签到 ,获得积分10
10秒前
Yiling完成签到,获得积分10
10秒前
12秒前
氕氘氚完成签到 ,获得积分10
16秒前
Hello应助不安的秋白采纳,获得10
18秒前
糯米团的完成签到 ,获得积分10
19秒前
神勇从波完成签到 ,获得积分10
21秒前
yellow完成签到 ,获得积分10
23秒前
虚幻元风完成签到 ,获得积分10
26秒前
xybjt完成签到 ,获得积分10
29秒前
巴达天使完成签到,获得积分10
35秒前
江三村完成签到 ,获得积分10
35秒前
量子星尘发布了新的文献求助10
53秒前
CyberHamster完成签到,获得积分10
1分钟前
xiaohong完成签到,获得积分10
1分钟前
朱比特完成签到,获得积分10
1分钟前
1分钟前
zmuzhang2019发布了新的文献求助10
1分钟前
onestepcloser完成签到 ,获得积分0
1分钟前
zoe完成签到 ,获得积分10
1分钟前
发嗲的慕蕊完成签到 ,获得积分10
1分钟前
Linson完成签到,获得积分10
1分钟前
顾矜应助赵三岁采纳,获得10
1分钟前
yyy2025完成签到,获得积分10
1分钟前
木雨亦潇潇完成签到,获得积分10
1分钟前
香蕉觅云应助nine2652采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
芳华如梦完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
土豆丝完成签到 ,获得积分10
1分钟前
琦琦完成签到,获得积分10
2分钟前
zzzz完成签到,获得积分20
2分钟前
GEZIKU完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038039
求助须知:如何正确求助?哪些是违规求助? 3575756
关于积分的说明 11373782
捐赠科研通 3305574
什么是DOI,文献DOI怎么找? 1819239
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022