亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Evaluation of Tissue Binding in Three Tissues across Five Species and Prediction of Volume of Distribution from Plasma Protein and Tissue Binding with an Existing Model

微粒体 化学 血浆蛋白结合 分布(数学) 分配量 结合位点 药代动力学 体外 生物化学 生物 数学 生物信息学 数学分析
作者
Frederick Hsu,Yi‐Chen Chen,Fabio Broccatelli
出处
期刊:Drug Metabolism and Disposition [American Society for Pharmacology and Experimental Therapeutics]
卷期号:49 (4): 330-336 被引量:13
标识
DOI:10.1124/dmd.120.000337
摘要

Volume of distribution (Vd) is a primary pharmacokinetic parameter used to calculate the half-life and plasma concentration-time profile of drugs. Numerous models have been relatively successful in predicting Vd, but the model developed by Korzekwa and Nagar is of particular interest because it utilizes plasma protein binding and microsomal binding data, both of which are readily available in vitro parameters. Here, Korzekwa and Nagar's model was validated and expanded upon using external and internal data sets. Tissue binding, plasma protein binding, Vd, physiochemical, and physiologic data sets were procured from literature and Genentech's internal data base. First, we investigated the hypothesis that tissue binding is primarily governed by passive processes that depend on the lipid composition of the tissue type. The fraction unbound in tissues (futissue) was very similar across human, rat, and mouse. In addition, we showed that dilution factors could be generated from nonlinear regression so that one futissue value could be used to estimate another one regardless of species. More importantly, results suggested that microsomes could serve as a surrogate for tissue binding. We applied the parameters from Korzekwa and Nagar's Vd model to two distinct liver microsomal data sets and found remarkably close statistical results. Brain and lung data sets also accurately predicted Vd, further validating the model. Vd prediction accuracy for compounds with log D7.4 > 1 significantly outperformed that of more hydrophilic compounds. Finally, human Vd predictions from Korzekwa and Nagar's model appear to be as accurate as rat allometry and slightly less accurate than dog and cynomolgus allometry.

SIGNIFICANCE STATEMENT

This study shows that tissue binding is comparable across five species and can be interconverted with a dilution factor. In addition, we applied internal and external data sets to the volume of distribution model developed by Korzekwa and Nagar and found comparable Vd prediction accuracy between the Vd model and single-species allometry. These findings could potentially accelerate the drug research and development process by reducing the amount of resources associated with in vitro binding and animal experiments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ttimmy完成签到,获得积分10
7秒前
Ronan完成签到 ,获得积分10
8秒前
膜王完成签到,获得积分10
8秒前
9秒前
12345679发布了新的文献求助10
14秒前
膜王发布了新的文献求助10
16秒前
岸在海的深处完成签到 ,获得积分10
19秒前
白樱恋曲完成签到,获得积分10
21秒前
21秒前
YOGA1115发布了新的文献求助30
25秒前
12345679完成签到,获得积分10
27秒前
爱科研的小凡完成签到 ,获得积分10
33秒前
在水一方应助膜王采纳,获得10
33秒前
33秒前
香蕉觅云应助平淡的洪纲采纳,获得10
33秒前
FashionBoy应助12345679采纳,获得10
34秒前
星辰大海应助廖少跑不快采纳,获得10
36秒前
42秒前
漫漫发布了新的文献求助10
43秒前
后陡门爱神完成签到 ,获得积分10
48秒前
49秒前
AX完成签到,获得积分10
51秒前
1分钟前
油炸绿番茄完成签到 ,获得积分10
1分钟前
hhh完成签到,获得积分10
1分钟前
1分钟前
小时了了发布了新的文献求助10
1分钟前
Helen完成签到,获得积分10
1分钟前
伊一发布了新的文献求助20
1分钟前
Eureka完成签到 ,获得积分10
1分钟前
桐桐应助科研通管家采纳,获得10
1分钟前
BUlKY完成签到 ,获得积分10
1分钟前
酷波er应助Or1ll采纳,获得30
1分钟前
消月明完成签到 ,获得积分10
2分钟前
彭于晏应助东郭凝蝶采纳,获得10
2分钟前
张华完成签到,获得积分10
2分钟前
Luis发布了新的文献求助50
2分钟前
in发布了新的文献求助10
2分钟前
Cpp完成签到 ,获得积分10
2分钟前
三三完成签到 ,获得积分10
2分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5220616
求助须知:如何正确求助?哪些是违规求助? 4393937
关于积分的说明 13679994
捐赠科研通 4256902
什么是DOI,文献DOI怎么找? 2335835
邀请新用户注册赠送积分活动 1333445
关于科研通互助平台的介绍 1287819