已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Evaluation of Tissue Binding in Three Tissues across Five Species and Prediction of Volume of Distribution from Plasma Protein and Tissue Binding with an Existing Model

微粒体 化学 血浆蛋白结合 分布(数学) 分配量 结合位点 药代动力学 体外 生物化学 生物 数学 生物信息学 数学分析
作者
Frederick Hsu,Yi‐Chen Chen,Fabio Broccatelli
出处
期刊:Drug Metabolism and Disposition [American Society for Pharmacology and Experimental Therapeutics]
卷期号:49 (4): 330-336 被引量:13
标识
DOI:10.1124/dmd.120.000337
摘要

Volume of distribution (Vd) is a primary pharmacokinetic parameter used to calculate the half-life and plasma concentration-time profile of drugs. Numerous models have been relatively successful in predicting Vd, but the model developed by Korzekwa and Nagar is of particular interest because it utilizes plasma protein binding and microsomal binding data, both of which are readily available in vitro parameters. Here, Korzekwa and Nagar's model was validated and expanded upon using external and internal data sets. Tissue binding, plasma protein binding, Vd, physiochemical, and physiologic data sets were procured from literature and Genentech's internal data base. First, we investigated the hypothesis that tissue binding is primarily governed by passive processes that depend on the lipid composition of the tissue type. The fraction unbound in tissues (futissue) was very similar across human, rat, and mouse. In addition, we showed that dilution factors could be generated from nonlinear regression so that one futissue value could be used to estimate another one regardless of species. More importantly, results suggested that microsomes could serve as a surrogate for tissue binding. We applied the parameters from Korzekwa and Nagar's Vd model to two distinct liver microsomal data sets and found remarkably close statistical results. Brain and lung data sets also accurately predicted Vd, further validating the model. Vd prediction accuracy for compounds with log D7.4 > 1 significantly outperformed that of more hydrophilic compounds. Finally, human Vd predictions from Korzekwa and Nagar's model appear to be as accurate as rat allometry and slightly less accurate than dog and cynomolgus allometry.

SIGNIFICANCE STATEMENT

This study shows that tissue binding is comparable across five species and can be interconverted with a dilution factor. In addition, we applied internal and external data sets to the volume of distribution model developed by Korzekwa and Nagar and found comparable Vd prediction accuracy between the Vd model and single-species allometry. These findings could potentially accelerate the drug research and development process by reducing the amount of resources associated with in vitro binding and animal experiments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
机灵柚子发布了新的文献求助60
1秒前
sfx12311完成签到,获得积分10
1秒前
杭三问发布了新的文献求助10
4秒前
吴DrYDYY完成签到,获得积分10
4秒前
Ava应助陌上采纳,获得15
5秒前
7秒前
灵巧大开完成签到,获得积分20
7秒前
8秒前
Akim应助眉洛采纳,获得10
11秒前
我的文献呢应助机灵柚子采纳,获得30
11秒前
ShengzhangLiu发布了新的文献求助10
13秒前
浮游应助Steven采纳,获得10
14秒前
赘婿应助痴情的萃采纳,获得10
14秒前
orixero应助独特的追命采纳,获得100
19秒前
19秒前
20秒前
21秒前
那日迈完成签到,获得积分10
22秒前
浮游应助美味的屑狐狸采纳,获得10
22秒前
23秒前
皮卡丘完成签到 ,获得积分0
23秒前
26秒前
个性梦曼发布了新的文献求助10
26秒前
27秒前
31秒前
32秒前
krajicek完成签到,获得积分10
32秒前
32秒前
个性梦曼完成签到,获得积分10
32秒前
Jason完成签到,获得积分10
33秒前
lulu完成签到 ,获得积分10
35秒前
Peter完成签到 ,获得积分10
36秒前
37秒前
Bio应助形心1431采纳,获得30
38秒前
我是老大应助形心1431采纳,获得10
38秒前
卡恩完成签到 ,获得积分0
38秒前
xuleiman发布了新的文献求助10
39秒前
ASH完成签到 ,获得积分10
41秒前
42秒前
42秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Hidden Generalizations Phonological Opacity in Optimality Theory 500
translating meaning 500
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4899638
求助须知:如何正确求助?哪些是违规求助? 4180022
关于积分的说明 12975912
捐赠科研通 3944058
什么是DOI,文献DOI怎么找? 2163620
邀请新用户注册赠送积分活动 1181872
关于科研通互助平台的介绍 1087623