亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Integration of APSIM and PROSAIL models to develop more precise radiometric estimation of crop traits using deep learning

高光谱成像 叶面积指数 遥感 大气辐射传输码 天蓬 计算机科学 数学 环境科学 辐射传输 农学 地理 光学 物理 生物 考古
作者
Qiaomin Chen,Bangyou Zheng,Tong Chen,Scott Chapman
标识
DOI:10.1101/2021.02.02.429471
摘要

A major challenge for the estimation of crop traits (biophysical variables) from canopy reflectance is the creation of a high-quality training dataset. This can be addressed by using radiative transfer models (RTMs) to generate training dataset representing "real-world" data in situations with varying crop types and growth status as well as various observation configurations. However, this approach can lead to "ill-posed" problems related to assumptions in the sampling strategy and due to uncertainty in the model, resulting in unsatisfactory inversion results for retrieval of target variables. In order to address this problem, this research investigates a practical way to generate higher quality "synthetic" training data by integrating a crop growth model (CGM, in this case APSIM) with an RTM (in this case PROSAIL). This allows control of uncertainties of the RTM by imposing biological constraints on distribution and co-distribution of related variables. Subsequently, the method was theoretically validated on two types of synthetic dataset generated by PROSAIL or the coupling of APSIM and PROSAIL through comparing estimation precision for leaf area index (LAI), leaf chlorophyll content (Cab), leaf dry matter (Cm) and leaf water content (Cw). Additionally, the capabilities of current deep learning techniques using high spectral resolution hyperspectral data were investigated. The main findings include: (1) Feedforward neural network (FFNN) provided with appropriate configuration is a promising technique to retrieve crop traits from input features consisting of 1 nm-wide hyperspectral bands across 400-2500 nm range and observation configuration (solar and viewing angles), leading to a precise joint estimation for LAI (RMSE=0.061 m2 m-2), Cab (RMSE=1.42 μg cm-2), Cm (RMSE=0.000176 g cm-2) and Cw (RMSE=0.000319 g cm-2); (2) For the aim of model simplification, a narrower range in 400-1100 nm without observation configuration in input of FFNN model provided less precise estimation for LAI (RMSE=0.087 m2 m-2), Cab (RMSE=1.92 μg cm-2), Cm (RMSE=0.000299 g cm-2) and Cw (RMSE=0.001271 g cm-2); (3) The introduction of biological constraints in training datasets improved FFNN model performance in both average precision and stability, resulting in a much accurate estimation for LAI (RMSE=0.006 m2 m-2), Cab (RMSE=0.45 μg cm-2), Cm (RMSE=0.000039 g cm-2) and Cw (RMSE=0.000072 g cm-2), and this improvement could be further increased by enriching sample diversity in training dataset.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
14秒前
龍一发布了新的文献求助20
19秒前
请叫我风吹麦浪应助有人采纳,获得10
32秒前
34秒前
33完成签到,获得积分0
39秒前
asdfqaz完成签到,获得积分10
46秒前
科研通AI2S应助丰富寒风采纳,获得10
58秒前
58秒前
归尘发布了新的文献求助10
1分钟前
1分钟前
丰富寒风发布了新的文献求助10
1分钟前
酷炫的尔丝完成签到 ,获得积分10
1分钟前
duanhuiyuan应助有人采纳,获得10
1分钟前
丰富寒风完成签到,获得积分20
1分钟前
激动的似狮完成签到,获得积分10
1分钟前
奔跑的蒲公英完成签到,获得积分10
1分钟前
1分钟前
藤椒辣鱼应助科研通管家采纳,获得10
1分钟前
藤椒辣鱼应助科研通管家采纳,获得10
1分钟前
藤椒辣鱼应助科研通管家采纳,获得10
1分钟前
藤椒辣鱼应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
2分钟前
机智迎天完成签到 ,获得积分10
2分钟前
HS完成签到,获得积分10
2分钟前
2分钟前
Mong那粒沙完成签到,获得积分10
2分钟前
zhang_23完成签到,获得积分10
2分钟前
luna完成签到 ,获得积分10
2分钟前
2分钟前
3分钟前
haha发布了新的文献求助30
3分钟前
搜集达人应助ceeray23采纳,获得111
3分钟前
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
haha完成签到,获得积分10
3分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3466817
求助须知:如何正确求助?哪些是违规求助? 3059596
关于积分的说明 9067206
捐赠科研通 2750080
什么是DOI,文献DOI怎么找? 1508953
科研通“疑难数据库(出版商)”最低求助积分说明 697124
邀请新用户注册赠送积分活动 696896