Synthesis of 2D Li4Ti5O12 Nanosheets via the “Insertion–Exfoliation–Lithiation” Process

材料科学 剥脱关节 过程(计算) 化学工程 纳米技术 计算机科学 工程类 石墨烯 操作系统
作者
Weiwei Wu,Changqing Lin,Shaowen Li,Xiaoyu Tang,Changchun Sun,Wenyu Zhao,Siyuan Liu,Miao Bai,Yingchun Cheng,Yue Ma
出处
期刊:ACS applied energy materials [American Chemical Society]
卷期号:2 (10): 7321-7329 被引量:11
标识
DOI:10.1021/acsaem.9b01296
摘要

Plenty of research efforts have been devoted to developing the anisotropic 2D architectures with intriguing electrochemical and optoelectronic properties. However, the scalable production of nonlayered binary metal oxides with a 2D structure still remains a great challenge. Here, we develop an "insertion–exfoliation–lithiation" process to delaminate the spinel Li4Ti5O12 (LTO) into the thickness of ∼4 nm. After the intercalation of methylamine (MA) into the H2Ti3O7 interlayers, the MA intercalated titanic acid (MA/Ti3O7) exhibits the volume expansion along the stacking direction with the interlayer spacing increasing from an original 7.9 to 10.1 Å. Driven by the acid–base equilibrium and osmotic pressure balance, this crucial step significantly enhances the exfoliation yield of MA/Ti3O7 nanosheets upon the mechanical peeling process. First-principles calculation validates that 1.1 unit of MA has been inserted per mole of H2Ti3O7 described as MA1.1H0.9Ti3O7. In addition, the transmission-mode in situ X-ray diffraction records the real-time phase transition of the as-developed synthetic process, enabling the precise control over the reaction temperature, phase purity, crystallinity of each intermediate, and prevention of the restacking of the LTO nanosheets into the cubic-spinel bulk material. The as-fabricated LTO nanosheets with an appealing ultrathin structure exhibit a reversible specific capacity of 210 mA h g–1 at 0.25 C, which far surpasses the theoretical capacity limit of bulk counterparts due to the pseudocapacitive contribution from the reduced dimensionality.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lkymxt发布了新的文献求助30
刚刚
牛大锤完成签到,获得积分10
1秒前
多加芝士发布了新的文献求助10
1秒前
1秒前
沐沐发布了新的文献求助10
1秒前
gb完成签到 ,获得积分10
1秒前
WizBLue发布了新的文献求助10
1秒前
1秒前
十六夜彦发布了新的文献求助10
2秒前
2秒前
2秒前
2秒前
2秒前
隐形曼青应助热热采纳,获得10
3秒前
whyren完成签到,获得积分10
3秒前
Dr菜完成签到,获得积分10
3秒前
湖畔望月寒完成签到,获得积分20
3秒前
4秒前
雷小仙儿完成签到,获得积分10
4秒前
4秒前
受伤的怀绿完成签到,获得积分10
4秒前
4秒前
轻易完成签到,获得积分20
5秒前
执着亿先完成签到 ,获得积分10
5秒前
5秒前
science完成签到,获得积分10
5秒前
5秒前
5秒前
5秒前
今后应助复杂黑夜采纳,获得10
6秒前
6秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
Meyako应助小魏采纳,获得10
6秒前
sofia发布了新的文献求助10
6秒前
7秒前
7秒前
火山完成签到 ,获得积分10
7秒前
务实的厉发布了新的文献求助10
7秒前
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645868
求助须知:如何正确求助?哪些是违规求助? 4769933
关于积分的说明 15032529
捐赠科研通 4804556
什么是DOI,文献DOI怎么找? 2569078
邀请新用户注册赠送积分活动 1526182
关于科研通互助平台的介绍 1485721