Hierarchical Long Short-Term Concurrent Memory for Human Interaction Recognition

卷积神经网络 人工神经网络
作者
Xiangbo Shu,Jinhui Tang,Guo-Jun Qi,Wei Liu,Jian Yang
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:43 (3): 1110-1118 被引量:44
标识
DOI:10.1109/tpami.2019.2942030
摘要

In this work, we aim to address the problem of human interaction recognition in videos by exploring the long-term inter-related dynamics among multiple persons. Recently, Long Short-Term Memory (LSTM) has become a popular choice to model individual dynamic for single-person action recognition due to its ability to capture the temporal motion information in a range. However, most existing LSTM-based methods focus only on capturing the dynamics of human interaction by simply combining all dynamics of individuals or modeling them as a whole. Such methods neglect the inter-related dynamics of how human interactions change over time. To this end, we propose a novel Hierarchical Long Short-Term Concurrent Memory (H-LSTCM) to model the long-term inter-related dynamics among a group of persons for recognizing human interactions. Specifically, we first feed each person's static features into a Single-Person LSTM to model the single-person dynamic. Subsequently, at one time step, the outputs of all Single-Person LSTM units are fed into a novel Concurrent LSTM (Co-LSTM) unit, which mainly consists of multiple sub-memory units, a new cell gate, and a new co-memory cell. In the Co-LSTM unit, each sub-memory unit stores individual motion information, while this Co-LSTM unit selectively integrates and stores inter-related motion information between multiple interacting persons from multiple sub-memory units via the cell gate and co-memory cell, respectively. Extensive experiments on several public datasets validate the effectiveness of the proposed H-LSTCM by comparing against baseline and state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形耷完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
2秒前
Jasper应助科研通管家采纳,获得10
5秒前
5秒前
充电宝应助科研通管家采纳,获得10
5秒前
SYLH应助科研通管家采纳,获得10
5秒前
大个应助科研通管家采纳,获得10
5秒前
科研通AI2S应助EuitNeck采纳,获得10
5秒前
SYLH应助科研通管家采纳,获得10
5秒前
CipherSage应助科研通管家采纳,获得10
6秒前
cdercder应助科研通管家采纳,获得20
6秒前
SYLH应助科研通管家采纳,获得10
6秒前
NexusExplorer应助科研通管家采纳,获得10
6秒前
香蕉觅云应助科研通管家采纳,获得10
6秒前
NexusExplorer应助科研通管家采纳,获得10
6秒前
SYLH应助科研通管家采纳,获得30
6秒前
SYLH应助科研通管家采纳,获得10
6秒前
无花果应助科研通管家采纳,获得10
6秒前
ding应助科研通管家采纳,获得10
6秒前
张军辉发布了新的文献求助50
7秒前
领导范儿应助犹豫觅翠采纳,获得10
7秒前
orixero应助咩咩咩采纳,获得10
7秒前
XY完成签到,获得积分10
8秒前
冷静的芷蕊完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
9秒前
深情安青应助强健的季节采纳,获得10
9秒前
11秒前
石头发布了新的文献求助10
11秒前
马佳凯完成签到,获得积分10
12秒前
13秒前
13秒前
肖肖完成签到,获得积分10
14秒前
量子星尘发布了新的文献求助10
14秒前
NexusExplorer应助LL采纳,获得30
14秒前
15秒前
ahai完成签到 ,获得积分10
16秒前
18秒前
18秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
An experimental and analytical investigation on the fatigue behaviour of fuselage riveted lap joints: The significance of the rivet squeeze force, and a comparison of 2024-T3 and Glare 3 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3664568
求助须知:如何正确求助?哪些是违规求助? 3224522
关于积分的说明 9758004
捐赠科研通 2934442
什么是DOI,文献DOI怎么找? 1606858
邀请新用户注册赠送积分活动 758890
科研通“疑难数据库(出版商)”最低求助积分说明 735035