Weakly Supervised Deep Learning for Whole Slide Lung Cancer Image Analysis

计算机科学 判别式 人工智能 利用 特征选择 分类器(UML) 深度学习 背景(考古学) 模式识别(心理学) 机器学习 数字化病理学 计算机安全 生物 古生物学
作者
Xi Wang,Hao Chen,Caixia Gan,Huangjing Lin,Qi Dou,Efstratios Tsougenis,Qitao Huang,Muyan Cai,Pheng‐Ann Heng
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:50 (9): 3950-3962 被引量:322
标识
DOI:10.1109/tcyb.2019.2935141
摘要

Histopathology image analysis serves as the gold standard for cancer diagnosis. Efficient and precise diagnosis is quite critical for the subsequent therapeutic treatment of patients. So far, computer-aided diagnosis has not been widely applied in pathological field yet as currently well-addressed tasks are only the tip of the iceberg. Whole slide image (WSI) classification is a quite challenging problem. First, the scarcity of annotations heavily impedes the pace of developing effective approaches. Pixelwise delineated annotations on WSIs are time consuming and tedious, which poses difficulties in building a large-scale training dataset. In addition, a variety of heterogeneous patterns of tumor existing in high magnification field are actually the major obstacle. Furthermore, a gigapixel scale WSI cannot be directly analyzed due to the immeasurable computational cost. How to design the weakly supervised learning methods to maximize the use of available WSI-level labels that can be readily obtained in clinical practice is quite appealing. To overcome these challenges, we present a weakly supervised approach in this article for fast and effective classification on the whole slide lung cancer images. Our method first takes advantage of a patch-based fully convolutional network (FCN) to retrieve discriminative blocks and provides representative deep features with high efficiency. Then, different context-aware block selection and feature aggregation strategies are explored to generate globally holistic WSI descriptor which is ultimately fed into a random forest (RF) classifier for the image-level prediction. To the best of our knowledge, this is the first study to exploit the potential of image-level labels along with some coarse annotations for weakly supervised learning. A large-scale lung cancer WSI dataset is constructed in this article for evaluation, which validates the effectiveness and feasibility of the proposed method. Extensive experiments demonstrate the superior performance of our method that surpasses the state-of-the-art approaches by a significant margin with an accuracy of 97.3%. In addition, our method also achieves the best performance on the public lung cancer WSIs dataset from The Cancer Genome Atlas (TCGA). We highlight that a small number of coarse annotations can contribute to further accuracy improvement. We believe that weakly supervised learning methods have great potential to assist pathologists in histology image diagnosis in the near future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
young完成签到,获得积分10
刚刚
4秒前
young发布了新的文献求助10
4秒前
6秒前
田様应助Xicuws采纳,获得10
6秒前
结实凌瑶完成签到 ,获得积分10
6秒前
明亮凡梦完成签到,获得积分10
7秒前
那年的伟哥完成签到,获得积分10
7秒前
思源应助bofu采纳,获得10
8秒前
晴偏好发布了新的文献求助10
9秒前
科研通AI2S应助lllllljmjmjm采纳,获得10
10秒前
不忘初心发布了新的文献求助10
10秒前
正直画笔完成签到 ,获得积分10
10秒前
orixero应助大菠萝采纳,获得10
10秒前
10秒前
橘子发布了新的文献求助10
13秒前
屈绮兰发布了新的文献求助60
14秒前
MchemG应助嘟嘟52edm采纳,获得50
15秒前
yuebaoji发布了新的文献求助10
15秒前
16秒前
yang发布了新的文献求助10
17秒前
泡面小分队完成签到,获得积分10
17秒前
17秒前
希望天下0贩的0应助Costing采纳,获得10
18秒前
我爱吃菜完成签到 ,获得积分10
18秒前
19秒前
20秒前
21秒前
hhh发布了新的文献求助10
21秒前
bofu发布了新的文献求助10
22秒前
666发布了新的文献求助10
23秒前
量子星尘发布了新的文献求助10
25秒前
25秒前
25秒前
852应助风中的太阳采纳,获得10
26秒前
莉莉子发布了新的文献求助10
27秒前
29秒前
chen发布了新的文献求助10
30秒前
顺利煎蛋发布了新的文献求助30
31秒前
ksjkja发布了新的文献求助10
32秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979628
求助须知:如何正确求助?哪些是违规求助? 3523569
关于积分的说明 11218108
捐赠科研通 3261093
什么是DOI,文献DOI怎么找? 1800402
邀请新用户注册赠送积分活动 879099
科研通“疑难数据库(出版商)”最低求助积分说明 807163