Weakly Supervised Deep Learning for Whole Slide Lung Cancer Image Analysis

计算机科学 判别式 人工智能 利用 特征选择 分类器(UML) 深度学习 背景(考古学) 模式识别(心理学) 机器学习 数字化病理学 计算机安全 生物 古生物学
作者
Xi Wang,Hao Chen,Caixia Gan,Huangjing Lin,Qi Dou,Efstratios Tsougenis,Qitao Huang,Muyan Cai,Pheng‐Ann Heng
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:50 (9): 3950-3962 被引量:383
标识
DOI:10.1109/tcyb.2019.2935141
摘要

Histopathology image analysis serves as the gold standard for cancer diagnosis. Efficient and precise diagnosis is quite critical for the subsequent therapeutic treatment of patients. So far, computer-aided diagnosis has not been widely applied in pathological field yet as currently well-addressed tasks are only the tip of the iceberg. Whole slide image (WSI) classification is a quite challenging problem. First, the scarcity of annotations heavily impedes the pace of developing effective approaches. Pixelwise delineated annotations on WSIs are time consuming and tedious, which poses difficulties in building a large-scale training dataset. In addition, a variety of heterogeneous patterns of tumor existing in high magnification field are actually the major obstacle. Furthermore, a gigapixel scale WSI cannot be directly analyzed due to the immeasurable computational cost. How to design the weakly supervised learning methods to maximize the use of available WSI-level labels that can be readily obtained in clinical practice is quite appealing. To overcome these challenges, we present a weakly supervised approach in this article for fast and effective classification on the whole slide lung cancer images. Our method first takes advantage of a patch-based fully convolutional network (FCN) to retrieve discriminative blocks and provides representative deep features with high efficiency. Then, different context-aware block selection and feature aggregation strategies are explored to generate globally holistic WSI descriptor which is ultimately fed into a random forest (RF) classifier for the image-level prediction. To the best of our knowledge, this is the first study to exploit the potential of image-level labels along with some coarse annotations for weakly supervised learning. A large-scale lung cancer WSI dataset is constructed in this article for evaluation, which validates the effectiveness and feasibility of the proposed method. Extensive experiments demonstrate the superior performance of our method that surpasses the state-of-the-art approaches by a significant margin with an accuracy of 97.3%. In addition, our method also achieves the best performance on the public lung cancer WSIs dataset from The Cancer Genome Atlas (TCGA). We highlight that a small number of coarse annotations can contribute to further accuracy improvement. We believe that weakly supervised learning methods have great potential to assist pathologists in histology image diagnosis in the near future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
coco关注了科研通微信公众号
刚刚
所爱皆在发布了新的文献求助10
刚刚
1秒前
1秒前
NexusExplorer应助花生采纳,获得10
2秒前
内向灵凡发布了新的文献求助10
2秒前
科研通AI2S应助jennyyu采纳,获得10
2秒前
等等发布了新的文献求助10
3秒前
共享精神应助橘子采纳,获得10
3秒前
Fen3i发布了新的文献求助10
3秒前
3秒前
3秒前
4秒前
小二郎应助lk采纳,获得10
4秒前
我是老大应助乌云采纳,获得10
4秒前
Achhz关注了科研通微信公众号
4秒前
5秒前
Akim应助李栗子采纳,获得10
5秒前
容二遥完成签到,获得积分10
6秒前
呆萌的白竹完成签到,获得积分10
6秒前
建建完成签到,获得积分10
6秒前
NI发布了新的文献求助10
6秒前
6秒前
7秒前
曹俊蔚发布了新的文献求助10
7秒前
思源应助霞霞采纳,获得10
7秒前
derlun发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
8秒前
Orange应助Poker采纳,获得30
9秒前
Akim应助Fen3i采纳,获得10
9秒前
隐形曼青应助迷路千秋采纳,获得10
9秒前
5114发布了新的文献求助10
9秒前
所所应助aayy采纳,获得10
9秒前
天天快乐应助高大的大米采纳,获得10
9秒前
亦秋发布了新的文献求助10
10秒前
lyz666完成签到,获得积分10
10秒前
Return应助科研通管家采纳,获得10
10秒前
10秒前
隐形曼青应助科研通管家采纳,获得10
10秒前
嘿嘿应助科研通管家采纳,获得10
10秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694761
求助须知:如何正确求助?哪些是违规求助? 5098681
关于积分的说明 15214483
捐赠科研通 4851292
什么是DOI,文献DOI怎么找? 2602253
邀请新用户注册赠送积分活动 1554141
关于科研通互助平台的介绍 1512049