Weakly Supervised Deep Learning for Whole Slide Lung Cancer Image Analysis

计算机科学 判别式 人工智能 利用 特征选择 分类器(UML) 深度学习 背景(考古学) 模式识别(心理学) 机器学习 数字化病理学 计算机安全 生物 古生物学
作者
Xi Wang,Hao Chen,Caixia Gan,Huangjing Lin,Qi Dou,Efstratios Tsougenis,Qitao Huang,Muyan Cai,Pheng‐Ann Heng
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:50 (9): 3950-3962 被引量:383
标识
DOI:10.1109/tcyb.2019.2935141
摘要

Histopathology image analysis serves as the gold standard for cancer diagnosis. Efficient and precise diagnosis is quite critical for the subsequent therapeutic treatment of patients. So far, computer-aided diagnosis has not been widely applied in pathological field yet as currently well-addressed tasks are only the tip of the iceberg. Whole slide image (WSI) classification is a quite challenging problem. First, the scarcity of annotations heavily impedes the pace of developing effective approaches. Pixelwise delineated annotations on WSIs are time consuming and tedious, which poses difficulties in building a large-scale training dataset. In addition, a variety of heterogeneous patterns of tumor existing in high magnification field are actually the major obstacle. Furthermore, a gigapixel scale WSI cannot be directly analyzed due to the immeasurable computational cost. How to design the weakly supervised learning methods to maximize the use of available WSI-level labels that can be readily obtained in clinical practice is quite appealing. To overcome these challenges, we present a weakly supervised approach in this article for fast and effective classification on the whole slide lung cancer images. Our method first takes advantage of a patch-based fully convolutional network (FCN) to retrieve discriminative blocks and provides representative deep features with high efficiency. Then, different context-aware block selection and feature aggregation strategies are explored to generate globally holistic WSI descriptor which is ultimately fed into a random forest (RF) classifier for the image-level prediction. To the best of our knowledge, this is the first study to exploit the potential of image-level labels along with some coarse annotations for weakly supervised learning. A large-scale lung cancer WSI dataset is constructed in this article for evaluation, which validates the effectiveness and feasibility of the proposed method. Extensive experiments demonstrate the superior performance of our method that surpasses the state-of-the-art approaches by a significant margin with an accuracy of 97.3%. In addition, our method also achieves the best performance on the public lung cancer WSIs dataset from The Cancer Genome Atlas (TCGA). We highlight that a small number of coarse annotations can contribute to further accuracy improvement. We believe that weakly supervised learning methods have great potential to assist pathologists in histology image diagnosis in the near future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
3秒前
安安发布了新的文献求助10
4秒前
社会主义接班人完成签到 ,获得积分10
4秒前
5秒前
5秒前
还减肥呢完成签到 ,获得积分10
6秒前
6秒前
YX发布了新的文献求助10
7秒前
Ziang_Liu完成签到 ,获得积分10
7秒前
可爱的函函应助yaoyao采纳,获得10
7秒前
美好的邴完成签到 ,获得积分10
8秒前
典雅的幼枫关注了科研通微信公众号
8秒前
情怀应助王晓婷采纳,获得10
8秒前
8秒前
窝窝头完成签到 ,获得积分10
10秒前
传奇3应助YX采纳,获得10
12秒前
水煮牛牛完成签到,获得积分10
12秒前
Criminology34应助anan采纳,获得10
13秒前
14秒前
稳重的凡桃完成签到,获得积分10
15秒前
量子星尘发布了新的文献求助10
15秒前
量子星尘发布了新的文献求助10
15秒前
15秒前
踏实白昼发布了新的文献求助10
15秒前
千珏关注了科研通微信公众号
17秒前
vagary完成签到,获得积分10
18秒前
18秒前
18秒前
Jasper应助lwl采纳,获得10
19秒前
20秒前
漂亮的寄真完成签到,获得积分10
20秒前
21秒前
背后的语海完成签到 ,获得积分10
22秒前
22秒前
淼焱发布了新的文献求助10
22秒前
23秒前
科研通AI6.1应助zbzfp采纳,获得10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Electron Energy Loss Spectroscopy 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5778805
求助须知:如何正确求助?哪些是违规求助? 5643873
关于积分的说明 15450364
捐赠科研通 4910324
什么是DOI,文献DOI怎么找? 2642617
邀请新用户注册赠送积分活动 1590360
关于科研通互助平台的介绍 1544705