清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Weakly Supervised Deep Learning for Whole Slide Lung Cancer Image Analysis

计算机科学 判别式 人工智能 利用 特征选择 分类器(UML) 深度学习 背景(考古学) 模式识别(心理学) 机器学习 数字化病理学 计算机安全 生物 古生物学
作者
Xi Wang,Hao Chen,Caixia Gan,Huangjing Lin,Qi Dou,Efstratios Tsougenis,Qitao Huang,Muyan Cai,Pheng‐Ann Heng
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:50 (9): 3950-3962 被引量:383
标识
DOI:10.1109/tcyb.2019.2935141
摘要

Histopathology image analysis serves as the gold standard for cancer diagnosis. Efficient and precise diagnosis is quite critical for the subsequent therapeutic treatment of patients. So far, computer-aided diagnosis has not been widely applied in pathological field yet as currently well-addressed tasks are only the tip of the iceberg. Whole slide image (WSI) classification is a quite challenging problem. First, the scarcity of annotations heavily impedes the pace of developing effective approaches. Pixelwise delineated annotations on WSIs are time consuming and tedious, which poses difficulties in building a large-scale training dataset. In addition, a variety of heterogeneous patterns of tumor existing in high magnification field are actually the major obstacle. Furthermore, a gigapixel scale WSI cannot be directly analyzed due to the immeasurable computational cost. How to design the weakly supervised learning methods to maximize the use of available WSI-level labels that can be readily obtained in clinical practice is quite appealing. To overcome these challenges, we present a weakly supervised approach in this article for fast and effective classification on the whole slide lung cancer images. Our method first takes advantage of a patch-based fully convolutional network (FCN) to retrieve discriminative blocks and provides representative deep features with high efficiency. Then, different context-aware block selection and feature aggregation strategies are explored to generate globally holistic WSI descriptor which is ultimately fed into a random forest (RF) classifier for the image-level prediction. To the best of our knowledge, this is the first study to exploit the potential of image-level labels along with some coarse annotations for weakly supervised learning. A large-scale lung cancer WSI dataset is constructed in this article for evaluation, which validates the effectiveness and feasibility of the proposed method. Extensive experiments demonstrate the superior performance of our method that surpasses the state-of-the-art approaches by a significant margin with an accuracy of 97.3%. In addition, our method also achieves the best performance on the public lung cancer WSIs dataset from The Cancer Genome Atlas (TCGA). We highlight that a small number of coarse annotations can contribute to further accuracy improvement. We believe that weakly supervised learning methods have great potential to assist pathologists in histology image diagnosis in the near future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
芬芬完成签到 ,获得积分10
5秒前
8秒前
8秒前
CDX发布了新的文献求助10
12秒前
18秒前
CDX完成签到 ,获得积分10
21秒前
汎影发布了新的文献求助10
24秒前
所所应助King16采纳,获得10
28秒前
mianmian0118完成签到 ,获得积分10
35秒前
41秒前
阿尼完成签到 ,获得积分10
43秒前
King16发布了新的文献求助10
46秒前
Yidie完成签到,获得积分10
46秒前
充电宝应助牛油果战士采纳,获得10
52秒前
yushiolo完成签到 ,获得积分10
56秒前
银鱼在游完成签到,获得积分10
57秒前
57秒前
公西傲蕾完成签到,获得积分10
1分钟前
热带蚂蚁完成签到 ,获得积分10
1分钟前
双眼皮跳蚤完成签到,获得积分0
1分钟前
大侠完成签到 ,获得积分10
1分钟前
脑洞疼应助WQ采纳,获得10
1分钟前
1分钟前
叁月二完成签到 ,获得积分10
1分钟前
tuihuo发布了新的文献求助10
1分钟前
1分钟前
小九发布了新的文献求助10
1分钟前
WQ发布了新的文献求助10
1分钟前
tuihuo完成签到,获得积分10
1分钟前
1分钟前
星辰大海应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
1分钟前
cherlia发布了新的文献求助30
1分钟前
1分钟前
1分钟前
yanxueyi完成签到 ,获得积分10
1分钟前
Dreammy完成签到,获得积分10
1分钟前
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5764738
求助须知:如何正确求助?哪些是违规求助? 5554520
关于积分的说明 15406551
捐赠科研通 4899719
什么是DOI,文献DOI怎么找? 2635938
邀请新用户注册赠送积分活动 1584129
关于科研通互助平台的介绍 1539363