亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Weakly Supervised Deep Learning for Whole Slide Lung Cancer Image Analysis

计算机科学 判别式 人工智能 利用 特征选择 分类器(UML) 深度学习 背景(考古学) 模式识别(心理学) 机器学习 数字化病理学 计算机安全 生物 古生物学
作者
Xi Wang,Hao Chen,Caixia Gan,Huangjing Lin,Qi Dou,Efstratios Tsougenis,Qitao Huang,Muyan Cai,Pheng‐Ann Heng
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:50 (9): 3950-3962 被引量:383
标识
DOI:10.1109/tcyb.2019.2935141
摘要

Histopathology image analysis serves as the gold standard for cancer diagnosis. Efficient and precise diagnosis is quite critical for the subsequent therapeutic treatment of patients. So far, computer-aided diagnosis has not been widely applied in pathological field yet as currently well-addressed tasks are only the tip of the iceberg. Whole slide image (WSI) classification is a quite challenging problem. First, the scarcity of annotations heavily impedes the pace of developing effective approaches. Pixelwise delineated annotations on WSIs are time consuming and tedious, which poses difficulties in building a large-scale training dataset. In addition, a variety of heterogeneous patterns of tumor existing in high magnification field are actually the major obstacle. Furthermore, a gigapixel scale WSI cannot be directly analyzed due to the immeasurable computational cost. How to design the weakly supervised learning methods to maximize the use of available WSI-level labels that can be readily obtained in clinical practice is quite appealing. To overcome these challenges, we present a weakly supervised approach in this article for fast and effective classification on the whole slide lung cancer images. Our method first takes advantage of a patch-based fully convolutional network (FCN) to retrieve discriminative blocks and provides representative deep features with high efficiency. Then, different context-aware block selection and feature aggregation strategies are explored to generate globally holistic WSI descriptor which is ultimately fed into a random forest (RF) classifier for the image-level prediction. To the best of our knowledge, this is the first study to exploit the potential of image-level labels along with some coarse annotations for weakly supervised learning. A large-scale lung cancer WSI dataset is constructed in this article for evaluation, which validates the effectiveness and feasibility of the proposed method. Extensive experiments demonstrate the superior performance of our method that surpasses the state-of-the-art approaches by a significant margin with an accuracy of 97.3%. In addition, our method also achieves the best performance on the public lung cancer WSIs dataset from The Cancer Genome Atlas (TCGA). We highlight that a small number of coarse annotations can contribute to further accuracy improvement. We believe that weakly supervised learning methods have great potential to assist pathologists in histology image diagnosis in the near future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
clei完成签到 ,获得积分10
1秒前
1秒前
5秒前
Cmqq发布了新的文献求助10
6秒前
宝贝丫头完成签到 ,获得积分10
13秒前
22秒前
23秒前
28秒前
12完成签到,获得积分10
29秒前
Zrrr完成签到 ,获得积分10
30秒前
雨灵完成签到,获得积分10
34秒前
38秒前
研友_Zlepz8完成签到,获得积分0
41秒前
雨灵发布了新的文献求助10
42秒前
小马甲应助研友_Zlepz8采纳,获得10
45秒前
49秒前
mellow完成签到,获得积分10
52秒前
文静人达发布了新的文献求助10
53秒前
55秒前
aliu发布了新的文献求助30
56秒前
57秒前
研友_Zlepz8发布了新的文献求助10
59秒前
1分钟前
BowieHuang应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
大国完成签到,获得积分20
1分钟前
司空晓山发布了新的文献求助20
1分钟前
C_关闭了C_文献求助
1分钟前
曹兆发布了新的文献求助100
1分钟前
失眠呆呆鱼完成签到 ,获得积分10
1分钟前
kluberos完成签到 ,获得积分10
1分钟前
1分钟前
lvlv完成签到,获得积分10
1分钟前
大国发布了新的文献求助10
1分钟前
龙卡烧烤店完成签到,获得积分10
1分钟前
saflgf完成签到,获得积分10
1分钟前
OvO_4577完成签到,获得积分10
2分钟前
脑洞疼应助满意的世界采纳,获得10
2分钟前
汉堡包应助健忘的板凳采纳,获得10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599706
求助须知:如何正确求助?哪些是违规求助? 4685410
关于积分的说明 14838480
捐赠科研通 4670043
什么是DOI,文献DOI怎么找? 2538158
邀请新用户注册赠送积分活动 1505527
关于科研通互助平台的介绍 1470898