Weakly Supervised Deep Learning for Whole Slide Lung Cancer Image Analysis

计算机科学 判别式 人工智能 利用 特征选择 分类器(UML) 深度学习 背景(考古学) 模式识别(心理学) 机器学习 数字化病理学 计算机安全 生物 古生物学
作者
Xi Wang,Hao Chen,Caixia Gan,Huangjing Lin,Qi Dou,Efstratios Tsougenis,Qitao Huang,Muyan Cai,Pheng‐Ann Heng
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:50 (9): 3950-3962 被引量:308
标识
DOI:10.1109/tcyb.2019.2935141
摘要

Histopathology image analysis serves as the gold standard for cancer diagnosis. Efficient and precise diagnosis is quite critical for the subsequent therapeutic treatment of patients. So far, computer-aided diagnosis has not been widely applied in pathological field yet as currently well-addressed tasks are only the tip of the iceberg. Whole slide image (WSI) classification is a quite challenging problem. First, the scarcity of annotations heavily impedes the pace of developing effective approaches. Pixelwise delineated annotations on WSIs are time consuming and tedious, which poses difficulties in building a large-scale training dataset. In addition, a variety of heterogeneous patterns of tumor existing in high magnification field are actually the major obstacle. Furthermore, a gigapixel scale WSI cannot be directly analyzed due to the immeasurable computational cost. How to design the weakly supervised learning methods to maximize the use of available WSI-level labels that can be readily obtained in clinical practice is quite appealing. To overcome these challenges, we present a weakly supervised approach in this article for fast and effective classification on the whole slide lung cancer images. Our method first takes advantage of a patch-based fully convolutional network (FCN) to retrieve discriminative blocks and provides representative deep features with high efficiency. Then, different context-aware block selection and feature aggregation strategies are explored to generate globally holistic WSI descriptor which is ultimately fed into a random forest (RF) classifier for the image-level prediction. To the best of our knowledge, this is the first study to exploit the potential of image-level labels along with some coarse annotations for weakly supervised learning. A large-scale lung cancer WSI dataset is constructed in this article for evaluation, which validates the effectiveness and feasibility of the proposed method. Extensive experiments demonstrate the superior performance of our method that surpasses the state-of-the-art approaches by a significant margin with an accuracy of 97.3%. In addition, our method also achieves the best performance on the public lung cancer WSIs dataset from The Cancer Genome Atlas (TCGA). We highlight that a small number of coarse annotations can contribute to further accuracy improvement. We believe that weakly supervised learning methods have great potential to assist pathologists in histology image diagnosis in the near future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shore完成签到,获得积分10
刚刚
梨儿完成签到 ,获得积分10
刚刚
mwm621发布了新的文献求助30
刚刚
lwj完成签到,获得积分10
1秒前
认真路人完成签到 ,获得积分10
1秒前
NexusExplorer应助longlong采纳,获得10
2秒前
3秒前
4秒前
JJ完成签到,获得积分10
4秒前
xjcy应助陈椅子的求学采纳,获得10
4秒前
学术智子发布了新的文献求助10
5秒前
5秒前
乐乐应助sdasdd10采纳,获得10
6秒前
7秒前
333cu完成签到,获得积分10
7秒前
科研轮回发布了新的文献求助10
7秒前
8秒前
AAA完成签到,获得积分10
8秒前
8秒前
集力申完成签到,获得积分10
9秒前
liuxiaoying完成签到,获得积分10
9秒前
坐等时光看轻自己完成签到,获得积分10
9秒前
笑点低靖仇完成签到,获得积分10
9秒前
11秒前
彩虹猫完成签到 ,获得积分10
11秒前
灵巧的孤容完成签到,获得积分10
12秒前
12秒前
CodeCraft应助elidan采纳,获得10
13秒前
13秒前
14秒前
索靖发布了新的文献求助10
15秒前
15秒前
16秒前
16秒前
lzy发布了新的文献求助10
17秒前
感动的芝麻完成签到,获得积分10
17秒前
汉堡包应助林由夕采纳,获得10
17秒前
17秒前
linuo完成签到,获得积分10
17秒前
ngg完成签到,获得积分10
18秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Very-high-order BVD Schemes Using β-variable THINC Method 850
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3249720
求助须知:如何正确求助?哪些是违规求助? 2892889
关于积分的说明 8274610
捐赠科研通 2561137
什么是DOI,文献DOI怎么找? 1389585
科研通“疑难数据库(出版商)”最低求助积分说明 651301
邀请新用户注册赠送积分活动 628010