亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Fast Enhanced CT Metal Artifact Reduction Using Data Domain Deep Learning

人工智能 计算机科学 投影(关系代数) 计算机视觉 迭代重建 插值(计算机图形学) 块(置换群论) 还原(数学) 深度学习 模式识别(心理学) 氡变换 工件(错误) 图像(数学) 算法 领域(数学分析) 数学 数学分析 几何学
作者
Muhammad Usman Ghani,W.C. Karl
出处
期刊:IEEE transactions on computational imaging 卷期号:6: 181-193 被引量:117
标识
DOI:10.1109/tci.2019.2937221
摘要

Filtered back projection (FBP) is the most widely used method for image reconstruction in X-ray computed tomography (CT) scanners, and can produce excellent images in many cases. However, the presence of dense materials, such as metals, can strongly attenuate or even completely block X-rays, producing severe streaking artifacts in the FBP reconstruction. These metal artifacts can greatly limit subsequent object delineation and information extraction from the images, restricting their diagnostic value. This problem is particularly acute in the security domain, where there is great heterogeneity in the objects that can appear in a scene, highly accurate decisions must be made quickly, and processing time is highly constrained. The standard practical approaches to reducing metal artifacts in CT imagery are either simplistic nonadaptive interpolation-based projection data completion methods or direct image post-processing methods. These standard approaches have had limited success. Motivated primarily by security applications, we present a new deep-learning-based metal artifact reduction approach that tackles the problem in the projection data domain. We treat the projection data corresponding to dense, metal objects as missing data and train an adversarial deep network to complete the missing data directly in the projection domain. The subsequent complete projection data is then used with conventional FBP to reconstruct an image intended to be free of artifacts. This new approach results in an end-to-end metal artifact reduction algorithm that is computationally efficient textcolorredand therefore practical and fits well into existing CT workflows allowing easy adoption in existing scanners. Training deep networks can be challenging, and another contribution of our work is to demonstrate that training data generated using an accurate X-ray simulation can be used to successfully train the deep network, when combined with transfer learning using limited real data sets. We demonstrate the effectiveness and potential of our algorithm on simulated and real examples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
19秒前
26秒前
量子星尘发布了新的文献求助10
38秒前
量子星尘发布了新的文献求助10
47秒前
科研通AI5应助芝士土豆泥采纳,获得10
57秒前
1分钟前
nmslwsnd250发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
1分钟前
Gavin发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
科研通AI5应助hihi采纳,获得10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
Kevin完成签到,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
Hello应助科研通管家采纳,获得10
2分钟前
MchemG应助科研通管家采纳,获得10
2分钟前
back you up应助科研通管家采纳,获得10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
mt13完成签到,获得积分10
2分钟前
2分钟前
mt13发布了新的文献求助20
2分钟前
Jasper应助复杂不二采纳,获得10
2分钟前
2分钟前
hihi发布了新的文献求助10
2分钟前
芝士土豆泥完成签到,获得积分10
2分钟前
2分钟前
2分钟前
量子星尘发布了新的文献求助10
3分钟前
彭于晏应助hihi采纳,获得10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3661009
求助须知:如何正确求助?哪些是违规求助? 3222203
关于积分的说明 9744032
捐赠科研通 2931818
什么是DOI,文献DOI怎么找? 1605232
邀请新用户注册赠送积分活动 757760
科研通“疑难数据库(出版商)”最低求助积分说明 734503