Chemo-economic analysis of battery aging and capacity fade in lithium-ion battery

健康状况 汽车蓄电池 荷电状态 锂(药物) 热失控 铅酸蓄电池 电池组 磷酸铁锂 储能 泄流深度
作者
Abhishek Sarkar,Pranav Shrotriya,Abhijit Chandra,Chao Hu
出处
期刊:Journal of energy storage [Elsevier BV]
卷期号:25: 100911-100911 被引量:14
标识
DOI:10.1016/j.est.2019.100911
摘要

Degradation due to capacity fade is a major cause of concern involved in the design and implementation of lithium-ion battery. In particular, the formation and growth of Solid Electrolyte Interface (SEI) have been considered as one of the primary degradation mechanisms affecting the cycle life of the battery. Over the past decade, several models have been reported towards simulation of SEI growth-induced degradation and prediction of cycle life. In this work, an efficient reduced-order electrochemical model was developed for a lithium cobalt oxide/graphite battery. A reaction–diffusion based SEI model was integrated with the electrochemical model to predict the cyclic capacity loss due to electrolyte deposition on the anode. The algorithm developed for this battery module was designed to reduce the computational time for capacity fade calculation with any (dis)charging protocol. The model was also applied for a lithium ferrous phosphate/graphite cell and in both cases, the fade predictions were within ±1% deviation from the experimental results. A comparison of two charging protocols was undertaken to identify approaches that improve capacity fade characteristics of battery. The electrochemical benefit of a reduced fading rate for aged (or used) lithium battery was investigated. A concept of “aged-battery” was proposed to be used as an advantage for better cycle-life in battery for biomedical devices and recycling of electric vehicle battery for solar panels applications. An economic analysis was performed to justify the benefits from lower fade that was weighed against the additional cost involved in aging the battery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
一个句号完成签到 ,获得积分10
刚刚
2秒前
2秒前
2秒前
洁净问儿发布了新的文献求助10
4秒前
4秒前
4秒前
丘比特应助perseverance采纳,获得10
4秒前
5秒前
星河发布了新的文献求助10
5秒前
5秒前
量子星尘发布了新的文献求助30
6秒前
希望天下0贩的0应助zqz421采纳,获得10
7秒前
7秒前
江潇发布了新的文献求助10
7秒前
大笨猫猫完成签到,获得积分10
7秒前
小胖卷毛完成签到,获得积分10
8秒前
正直乘云发布了新的文献求助10
8秒前
小马甲应助本特利采纳,获得10
10秒前
善学以致用应助潘宋采纳,获得10
10秒前
11秒前
11秒前
11秒前
Arturo应助张泽涵采纳,获得10
12秒前
Yocohua发布了新的文献求助10
12秒前
大福完成签到,获得积分10
13秒前
13秒前
14秒前
14秒前
15秒前
15秒前
yurany完成签到 ,获得积分10
15秒前
15秒前
wang完成签到,获得积分10
16秒前
daigang发布了新的文献求助10
16秒前
橘子完成签到,获得积分10
16秒前
松林发布了新的文献求助10
17秒前
大笨猫猫发布了新的文献求助10
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
International Encyclopedia of Business Management 1000
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4934322
求助须知:如何正确求助?哪些是违规求助? 4202226
关于积分的说明 13056506
捐赠科研通 3976520
什么是DOI,文献DOI怎么找? 2179026
邀请新用户注册赠送积分活动 1195304
关于科研通互助平台的介绍 1106681