Chemo-economic analysis of battery aging and capacity fade in lithium-ion battery

健康状况 汽车蓄电池 荷电状态 锂(药物) 热失控 铅酸蓄电池 电池组 磷酸铁锂 储能 泄流深度
作者
Abhishek Sarkar,Pranav Shrotriya,Abhijit Chandra,Chao Hu
出处
期刊:Journal of energy storage [Elsevier BV]
卷期号:25: 100911-100911 被引量:14
标识
DOI:10.1016/j.est.2019.100911
摘要

Degradation due to capacity fade is a major cause of concern involved in the design and implementation of lithium-ion battery. In particular, the formation and growth of Solid Electrolyte Interface (SEI) have been considered as one of the primary degradation mechanisms affecting the cycle life of the battery. Over the past decade, several models have been reported towards simulation of SEI growth-induced degradation and prediction of cycle life. In this work, an efficient reduced-order electrochemical model was developed for a lithium cobalt oxide/graphite battery. A reaction–diffusion based SEI model was integrated with the electrochemical model to predict the cyclic capacity loss due to electrolyte deposition on the anode. The algorithm developed for this battery module was designed to reduce the computational time for capacity fade calculation with any (dis)charging protocol. The model was also applied for a lithium ferrous phosphate/graphite cell and in both cases, the fade predictions were within ±1% deviation from the experimental results. A comparison of two charging protocols was undertaken to identify approaches that improve capacity fade characteristics of battery. The electrochemical benefit of a reduced fading rate for aged (or used) lithium battery was investigated. A concept of “aged-battery” was proposed to be used as an advantage for better cycle-life in battery for biomedical devices and recycling of electric vehicle battery for solar panels applications. An economic analysis was performed to justify the benefits from lower fade that was weighed against the additional cost involved in aging the battery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
笨笨青筠完成签到 ,获得积分10
5秒前
mengmenglv完成签到 ,获得积分0
5秒前
Tonald Yang完成签到 ,获得积分20
8秒前
9秒前
落后的怀梦完成签到 ,获得积分10
10秒前
陈坤完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
14秒前
斯文败类应助zgx采纳,获得10
15秒前
默默完成签到 ,获得积分10
15秒前
KY Mr.WANG完成签到,获得积分10
15秒前
29秒前
guoxingliu完成签到,获得积分10
33秒前
41秒前
阳佟水蓉完成签到,获得积分10
42秒前
gdgd完成签到,获得积分10
45秒前
量子星尘发布了新的文献求助10
47秒前
叮叮当当完成签到,获得积分10
49秒前
52秒前
52秒前
电致阿光完成签到,获得积分10
53秒前
ccc完成签到 ,获得积分10
55秒前
56秒前
zgx发布了新的文献求助10
58秒前
i2stay完成签到,获得积分10
58秒前
馒头完成签到,获得积分10
1分钟前
MS903完成签到,获得积分10
1分钟前
CJW完成签到 ,获得积分10
1分钟前
韧迹完成签到 ,获得积分0
1分钟前
mmd完成签到 ,获得积分10
1分钟前
七一安完成签到 ,获得积分10
1分钟前
浪麻麻完成签到 ,获得积分10
1分钟前
包容的剑完成签到 ,获得积分10
1分钟前
等待的大炮完成签到,获得积分10
1分钟前
注水萝卜完成签到 ,获得积分10
1分钟前
Chem34完成签到,获得积分10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
hhh2018687完成签到,获得积分10
1分钟前
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038039
求助须知:如何正确求助?哪些是违规求助? 3575756
关于积分的说明 11373782
捐赠科研通 3305574
什么是DOI,文献DOI怎么找? 1819239
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022