已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Context-Aware Attentive Knowledge Tracing

可解释性 计算机科学 人工智能 背景(考古学) 机器学习 水准点(测量) 个性化 任务(项目管理) 追踪 相似性(几何) 数据科学 万维网 古生物学 管理 大地测量学 经济 图像(数学) 生物 地理 操作系统
作者
Aritra Ghosh,Neil T. Heffernan,Andrew Lan
标识
DOI:10.1145/3394486.3403282
摘要

Knowledge tracing (KT) refers to the problem of predicting future learner performance given their past performance in educational applications. Recent developments in KT using flexible deep neural network-based models excel at this task. However, these models often offer limited interpretability, thus making them insufficient for personalized learning, which requires using interpretable feedback and actionable recommendations to help learners achieve better learning outcomes. In this paper, we propose attentive knowledge tracing (AKT), which couples flexible attention-based neural network models with a series of novel, interpretable model components inspired by cognitive and psychometric models. AKT uses a novel monotonic attention mechanism that relates a learner's future responses to assessment questions to their past responses; attention weights are computed using exponential decay and a context-aware relative distance measure, in addition to the similarity between questions. Moreover, we use the Rasch model to regularize the concept and question embeddings; these embeddings are able to capture individual differences among questions on the same concept without using an excessive number of parameters. We conduct experiments on several real-world benchmark datasets and show that AKT outperforms existing KT methods (by up to $6%$ in AUC in some cases) on predicting future learner responses. We also conduct several case studies and show that AKT exhibits excellent interpretability and thus has potential for automated feedback and personalization in real-world educational settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LYSM应助shangjiaGuo采纳,获得30
刚刚
1秒前
1秒前
Akim应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
2秒前
我是老大应助科研通管家采纳,获得10
3秒前
英俊的铭应助科研通管家采纳,获得10
3秒前
情怀应助科研通管家采纳,获得30
3秒前
3秒前
5秒前
大模型应助干净又晴采纳,获得10
5秒前
mellow发布了新的文献求助10
5秒前
YCG完成签到 ,获得积分10
5秒前
Amon发布了新的文献求助10
6秒前
称心嫣娆发布了新的文献求助10
7秒前
爆米花应助淡定采纳,获得10
8秒前
洞两完成签到,获得积分10
10秒前
11秒前
Akim应助俏皮的白柏采纳,获得10
11秒前
11秒前
14秒前
bkagyin应助一颗椰子糖耶采纳,获得10
16秒前
天天快乐应助露露采纳,获得10
16秒前
干净又晴发布了新的文献求助10
17秒前
18秒前
18秒前
wkjfh应助Leoniko采纳,获得10
19秒前
帅男发布了新的文献求助10
20秒前
wyp发布了新的文献求助10
21秒前
22秒前
子非鱼发布了新的文献求助10
22秒前
24秒前
阿氏之光发布了新的文献求助10
27秒前
烟花应助自由的读书人采纳,获得10
27秒前
酷炫抽屉完成签到 ,获得积分10
27秒前
28秒前
露露发布了新的文献求助10
28秒前
congenialboy发布了新的文献求助10
29秒前
30秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989797
求助须知:如何正确求助?哪些是违规求助? 3531914
关于积分的说明 11255516
捐赠科研通 3270597
什么是DOI,文献DOI怎么找? 1805008
邀请新用户注册赠送积分活动 882181
科研通“疑难数据库(出版商)”最低求助积分说明 809190