Context-Aware Attentive Knowledge Tracing

可解释性 计算机科学 人工智能 背景(考古学) 机器学习 水准点(测量) 个性化 任务(项目管理) 追踪 相似性(几何) 数据科学 万维网 古生物学 管理 大地测量学 经济 图像(数学) 生物 地理 操作系统
作者
Aritra Ghosh,Neil T. Heffernan,Andrew S. Lan
标识
DOI:10.1145/3394486.3403282
摘要

Knowledge tracing (KT) refers to the problem of predicting future learner performance given their past performance in educational applications. Recent developments in KT using flexible deep neural network-based models excel at this task. However, these models often offer limited interpretability, thus making them insufficient for personalized learning, which requires using interpretable feedback and actionable recommendations to help learners achieve better learning outcomes. In this paper, we propose attentive knowledge tracing (AKT), which couples flexible attention-based neural network models with a series of novel, interpretable model components inspired by cognitive and psychometric models. AKT uses a novel monotonic attention mechanism that relates a learner's future responses to assessment questions to their past responses; attention weights are computed using exponential decay and a context-aware relative distance measure, in addition to the similarity between questions. Moreover, we use the Rasch model to regularize the concept and question embeddings; these embeddings are able to capture individual differences among questions on the same concept without using an excessive number of parameters. We conduct experiments on several real-world benchmark datasets and show that AKT outperforms existing KT methods (by up to $6%$ in AUC in some cases) on predicting future learner responses. We also conduct several case studies and show that AKT exhibits excellent interpretability and thus has potential for automated feedback and personalization in real-world educational settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jzhang应助丙队长采纳,获得10
1秒前
2秒前
GXY发布了新的文献求助30
3秒前
Lucas应助专注秋尽采纳,获得10
3秒前
3秒前
754完成签到,获得积分10
3秒前
6秒前
学习猴发布了新的文献求助10
6秒前
充电宝应助炙热的如柏采纳,获得10
7秒前
所所应助qzaima采纳,获得10
7秒前
米兰达完成签到 ,获得积分0
8秒前
xg发布了新的文献求助10
10秒前
Loooong应助Ni采纳,获得10
11秒前
11秒前
WZ0904发布了新的文献求助10
11秒前
顾矜应助博ge采纳,获得10
13秒前
13秒前
Lotus发布了新的文献求助10
14秒前
15秒前
仁爱仙人掌完成签到,获得积分10
17秒前
ywang发布了新的文献求助10
17秒前
19秒前
19秒前
19秒前
ewqw关注了科研通微信公众号
20秒前
曦小蕊完成签到 ,获得积分10
20秒前
21秒前
22秒前
22秒前
奋斗灵波发布了新的文献求助10
22秒前
药学牛马发布了新的文献求助10
22秒前
22秒前
科研通AI5应助WZ0904采纳,获得10
23秒前
叶未晞yi发布了新的文献求助10
24秒前
ipeakkka发布了新的文献求助10
25秒前
Jzhang应助迷人的映雁采纳,获得10
25秒前
25秒前
zzz完成签到,获得积分10
26秒前
26秒前
小安发布了新的文献求助10
26秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824