Context-Aware Attentive Knowledge Tracing

可解释性 计算机科学 人工智能 背景(考古学) 机器学习 水准点(测量) 个性化 任务(项目管理) 追踪 相似性(几何) 数据科学 万维网 古生物学 管理 大地测量学 经济 图像(数学) 生物 地理 操作系统
作者
Aritra Ghosh,Neil T. Heffernan,Andrew Lan
标识
DOI:10.1145/3394486.3403282
摘要

Knowledge tracing (KT) refers to the problem of predicting future learner performance given their past performance in educational applications. Recent developments in KT using flexible deep neural network-based models excel at this task. However, these models often offer limited interpretability, thus making them insufficient for personalized learning, which requires using interpretable feedback and actionable recommendations to help learners achieve better learning outcomes. In this paper, we propose attentive knowledge tracing (AKT), which couples flexible attention-based neural network models with a series of novel, interpretable model components inspired by cognitive and psychometric models. AKT uses a novel monotonic attention mechanism that relates a learner's future responses to assessment questions to their past responses; attention weights are computed using exponential decay and a context-aware relative distance measure, in addition to the similarity between questions. Moreover, we use the Rasch model to regularize the concept and question embeddings; these embeddings are able to capture individual differences among questions on the same concept without using an excessive number of parameters. We conduct experiments on several real-world benchmark datasets and show that AKT outperforms existing KT methods (by up to $6%$ in AUC in some cases) on predicting future learner responses. We also conduct several case studies and show that AKT exhibits excellent interpretability and thus has potential for automated feedback and personalization in real-world educational settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bu2bujiaozsy完成签到,获得积分10
1秒前
蓝桥兰灯完成签到,获得积分10
1秒前
2秒前
3秒前
虚心求学完成签到,获得积分10
3秒前
科研通AI6应助欢喜大地采纳,获得10
3秒前
3秒前
4秒前
宋映梦完成签到 ,获得积分10
4秒前
aa完成签到,获得积分10
4秒前
4秒前
123发布了新的文献求助10
4秒前
HOKUTO完成签到,获得积分10
6秒前
奋斗草莓完成签到,获得积分10
7秒前
勤恳的半邪完成签到,获得积分20
8秒前
贝林7完成签到,获得积分10
8秒前
hanhan发布了新的文献求助10
9秒前
9秒前
sss完成签到 ,获得积分10
9秒前
9秒前
9秒前
彭于晏应助lx采纳,获得10
10秒前
HOKUTO发布了新的文献求助10
11秒前
忧郁的灵枫关注了科研通微信公众号
12秒前
尛鱻完成签到,获得积分20
12秒前
12秒前
13秒前
贝林7发布了新的文献求助10
14秒前
Orange应助勤恳的半邪采纳,获得10
15秒前
Hey完成签到 ,获得积分10
16秒前
浮游应助科研通管家采纳,获得10
17秒前
Akim应助科研通管家采纳,获得10
17秒前
xcgh应助科研通管家采纳,获得10
17秒前
FashionBoy应助科研通管家采纳,获得50
17秒前
汉堡包应助科研通管家采纳,获得10
18秒前
烟花应助科研通管家采纳,获得10
18秒前
小二郎应助科研通管家采纳,获得10
18秒前
星辰大海应助科研通管家采纳,获得10
18秒前
田様应助科研通管家采纳,获得20
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
量子光学理论与实验技术 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5328673
求助须知:如何正确求助?哪些是违规求助? 4468375
关于积分的说明 13904790
捐赠科研通 4361352
什么是DOI,文献DOI怎么找? 2395710
邀请新用户注册赠送积分活动 1389235
关于科研通互助平台的介绍 1360022