甲烷
笼状水合物
化学
单层
分子动力学
范德瓦尔斯力
吸附
二氧化碳
表面张力
化学物理
静水压力
分子
热力学
水合物
物理化学
有机化学
计算化学
物理
生物化学
作者
Parisa Naeiji,Tom K. Woo,Saman Alavi,Ryo Ohmura
摘要
Molecular dynamics simulations were performed to study the interfacial behavior of the pure carbon dioxide-water system and a binary 40:60 mol. % gas mixture of (carbon dioxide + methane)-water at the temperatures of 275.15 K and 298.15 K and pressures near 4 MPa for CO2 and up to 10 MPa for methane. The simulations are used to study the dynamic equilibrium of the gases at the water-gas interface, to determine the z-density profiles for the gases and water, and calculate the interfacial tension γ under the different temperature/pressure conditions close to those of the formation of clathrate hydrates of these gases. At the same hydrostatic gas phase pressure, the CO2-water interface has a lower interfacial tension than the CH4-water interface. A greater number of CO2 molecules, as much as three times more than methane at the same pressure, were adsorbed at the interfacial layer, which reflects the stronger electrostatic quadrupolar and van der Waals interactions between CO2 and water molecules at the interface. The water surfaces are covered by less than a monolayer of gas even when the pressure of the system goes near the saturation pressure of CO2. The surface adsorbed molecules are in dynamic equilibrium with the bulk gas and with exchange between the gas and interface regions occurring repeatedly within the timescale of the simulations. The effects of the changes in the CO2-water interfacial tension with external temperature and pressure conditions on the formation of the clathrate hydrates and other CO2 capture and sequestration processes are discussed.
科研通智能强力驱动
Strongly Powered by AbleSci AI