Inference and analysis of cell-cell communication using CellChat

推论 背景(考古学) 计算生物学 计算机科学 细胞信号 代表(政治) 细胞 信号转导 生物 细胞生物学 人工智能 遗传学 政治学 政治 古生物学 法学
作者
Suoqin Jin,Christian F. Guerrero‐Juarez,Lihua Zhang,Ivan Chang,Peggy Myung,Maksim V. Plikus,Qing Nie
标识
DOI:10.1101/2020.07.21.214387
摘要

Abstract Understanding global communications among cells requires accurate representation of cell-cell signaling links and effective systems-level analyses of those links. We constructed a database of interactions among ligands, receptors and their cofactors that accurately represents known heteromeric molecular complexes. Based on mass action models, we then developed CellChat, a tool that is able to quantitively infer and analyze intercellular communication networks from single-cell RNA-sequencing (scRNA-seq) data. CellChat predicts major signaling inputs and outputs for cells and how those cells and signals coordinate for functions using network analysis and pattern recognition approaches. Through manifold learning and quantitative contrasts, CellChat classifies signaling pathways and delineates conserved and context-specific pathways across different datasets. Applications of CellChat to several mouse skin scRNA-seq datasets for embryonic development and adult wound healing shows its ability to extract complex signaling patterns, both previously known as well as novel. Our versatile and easy-to-use toolkit CellChat and a web-based Explorer ( http://www.cellchat.org/ ) will help discover novel intercellular communications and build a cell-cell communication atlas in diverse tissues.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
iuhgnor完成签到,获得积分10
刚刚
刚刚
Fiona完成签到 ,获得积分10
1秒前
感动的老虎完成签到,获得积分10
2秒前
Criminology34应助自觉松采纳,获得10
2秒前
健忘捕完成签到 ,获得积分10
3秒前
4秒前
叶子发布了新的文献求助10
4秒前
5秒前
昀松完成签到,获得积分10
5秒前
6秒前
单薄月饼完成签到,获得积分10
9秒前
10秒前
11秒前
萝卜仙儿完成签到,获得积分10
12秒前
kkk完成签到,获得积分10
13秒前
孙一完成签到,获得积分10
13秒前
平常的青荷完成签到,获得积分10
13秒前
sunnyqqz完成签到,获得积分10
13秒前
小黑完成签到,获得积分10
13秒前
量子星尘发布了新的文献求助10
14秒前
星愿发布了新的文献求助10
14秒前
无花果应助red采纳,获得10
17秒前
ltc完成签到,获得积分10
18秒前
苗条而大河完成签到,获得积分10
18秒前
19秒前
lemon完成签到,获得积分10
19秒前
甜美的含之完成签到,获得积分10
20秒前
史迪仔完成签到,获得积分10
20秒前
韶邑完成签到,获得积分10
21秒前
ym完成签到 ,获得积分10
21秒前
秋田猫发布了新的文献求助10
22秒前
张张发布了新的文献求助10
22秒前
Progie应助星愿采纳,获得30
22秒前
小屁孩完成签到,获得积分10
23秒前
苏利完成签到,获得积分10
23秒前
xia完成签到 ,获得积分10
23秒前
神勇千万完成签到,获得积分10
23秒前
WittingGU完成签到,获得积分0
25秒前
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5427010
求助须知:如何正确求助?哪些是违规求助? 4540570
关于积分的说明 14172664
捐赠科研通 4458481
什么是DOI,文献DOI怎么找? 2445033
邀请新用户注册赠送积分活动 1436101
关于科研通互助平台的介绍 1413645