已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Large-scale neuromorphic optoelectronic computing with a reconfigurable diffractive processing unit

现场可编程门阵列 计算机硬件 计算机体系结构
作者
Tiankuang Zhou,Xing Lin,Jiamin Wu,Yitong Chen,Hao Xie,Yipeng Li,Jingtao Fan,Huaqiang Wu,Lu Fang,Qionghai Dai
出处
期刊:arXiv: Image and Video Processing 被引量:19
标识
DOI:10.1038/s41566-021-00796-w
摘要

Application-specific optical processors have been considered disruptive technologies for modern computing that can fundamentally accelerate the development of artificial intelligence (AI) by offering substantially improved computing performance. Recent advancements in optical neural network architectures for neural information processing have been applied to perform various machine learning tasks. However, the existing architectures have limited complexity and performance; and each of them requires its own dedicated design that cannot be reconfigured to switch between different neural network models for different applications after deployment. Here, we propose an optoelectronic reconfigurable computing paradigm by constructing a diffractive processing unit (DPU) that can efficiently support different neural networks and achieve a high model complexity with millions of neurons. It allocates almost all of its computational operations optically and achieves extremely high speed of data modulation and large-scale network parameter updating by dynamically programming optical modulators and photodetectors. We demonstrated the reconfiguration of the DPU to implement various diffractive feedforward and recurrent neural networks and developed a novel adaptive training approach to circumvent the system imperfections. We applied the trained networks for high-speed classifying of handwritten digit images and human action videos over benchmark datasets, and the experimental results revealed a comparable classification accuracy to the electronic computing approaches. Furthermore, our prototype system built with off-the-shelf optoelectronic components surpasses the performance of state-of-the-art graphics processing units (GPUs) by several times on computing speed and more than an order of magnitude on system energy efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
畅快的裙子完成签到,获得积分20
刚刚
1秒前
wy.he应助瘦瘦的寒珊采纳,获得30
3秒前
4秒前
8秒前
皮卡丘发布了新的文献求助10
10秒前
123456完成签到 ,获得积分10
11秒前
12秒前
polarisblue发布了新的文献求助10
14秒前
围城发布了新的文献求助10
17秒前
Dr发布了新的文献求助10
17秒前
满怀完成签到,获得积分10
18秒前
Vincent1990完成签到,获得积分10
18秒前
kami完成签到 ,获得积分10
18秒前
丘比特应助zkji采纳,获得10
20秒前
可耐的思远完成签到 ,获得积分10
20秒前
科研通AI2S应助zxb采纳,获得10
21秒前
睡不醒的xx完成签到 ,获得积分10
24秒前
character577完成签到 ,获得积分10
24秒前
trojan621应助小脸采纳,获得10
25秒前
polarisblue完成签到,获得积分10
26秒前
HEIKU应助瘦瘦的寒珊采纳,获得10
29秒前
充电宝应助yufei采纳,获得10
32秒前
DrLiu完成签到,获得积分10
32秒前
33秒前
35秒前
39秒前
科研通AI2S应助Crrr采纳,获得10
40秒前
44秒前
45秒前
zhong发布了新的文献求助10
46秒前
zhong发布了新的文献求助10
46秒前
zhong发布了新的文献求助10
46秒前
yufei发布了新的文献求助10
47秒前
围城完成签到,获得积分10
48秒前
9464完成签到 ,获得积分10
48秒前
皮卡丘完成签到,获得积分10
49秒前
小吕完成签到,获得积分10
57秒前
布丁儿完成签到 ,获得积分10
57秒前
58秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162121
求助须知:如何正确求助?哪些是违规求助? 2813196
关于积分的说明 7899113
捐赠科研通 2472301
什么是DOI,文献DOI怎么找? 1316428
科研通“疑难数据库(出版商)”最低求助积分说明 631305
版权声明 602142