Large-scale neuromorphic optoelectronic computing with a reconfigurable diffractive processing unit

现场可编程门阵列 计算机硬件 计算机体系结构
作者
Tiankuang Zhou,Xing Lin,Jiamin Wu,Yitong Chen,Hao Xie,Yipeng Li,Jingtao Fan,Huaqiang Wu,Lu Fang,Qionghai Dai
出处
期刊:arXiv: Image and Video Processing 被引量:19
标识
DOI:10.1038/s41566-021-00796-w
摘要

Application-specific optical processors have been considered disruptive technologies for modern computing that can fundamentally accelerate the development of artificial intelligence (AI) by offering substantially improved computing performance. Recent advancements in optical neural network architectures for neural information processing have been applied to perform various machine learning tasks. However, the existing architectures have limited complexity and performance; and each of them requires its own dedicated design that cannot be reconfigured to switch between different neural network models for different applications after deployment. Here, we propose an optoelectronic reconfigurable computing paradigm by constructing a diffractive processing unit (DPU) that can efficiently support different neural networks and achieve a high model complexity with millions of neurons. It allocates almost all of its computational operations optically and achieves extremely high speed of data modulation and large-scale network parameter updating by dynamically programming optical modulators and photodetectors. We demonstrated the reconfiguration of the DPU to implement various diffractive feedforward and recurrent neural networks and developed a novel adaptive training approach to circumvent the system imperfections. We applied the trained networks for high-speed classifying of handwritten digit images and human action videos over benchmark datasets, and the experimental results revealed a comparable classification accuracy to the electronic computing approaches. Furthermore, our prototype system built with off-the-shelf optoelectronic components surpasses the performance of state-of-the-art graphics processing units (GPUs) by several times on computing speed and more than an order of magnitude on system energy efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无奈的酒窝完成签到,获得积分10
1秒前
1秒前
2秒前
blingbling发布了新的文献求助10
2秒前
今后应助SherlockLiu采纳,获得30
4秒前
daniel发布了新的文献求助10
4秒前
Jason应助温言采纳,获得20
5秒前
逐风发布了新的文献求助30
6秒前
hhzz发布了新的文献求助10
6秒前
日月轮回完成签到,获得积分10
7秒前
8秒前
Yimim发布了新的文献求助10
8秒前
小小li完成签到 ,获得积分10
8秒前
小蘑菇应助细腻晓露采纳,获得10
8秒前
又胖了完成签到,获得积分10
9秒前
Eva完成签到,获得积分10
10秒前
10秒前
喵喵喵完成签到,获得积分20
10秒前
独摇之完成签到,获得积分10
10秒前
怡然雁凡完成签到,获得积分10
10秒前
顾jiu完成签到,获得积分10
11秒前
科研通AI5应助热依汗古丽采纳,获得10
11秒前
优秀剑愁完成签到 ,获得积分10
11秒前
敏感网络发布了新的文献求助50
12秒前
院士人启动完成签到,获得积分10
12秒前
13秒前
黄花菜完成签到 ,获得积分0
15秒前
15秒前
顾jiu发布了新的文献求助30
15秒前
Yimim完成签到,获得积分10
15秒前
16秒前
白菜完成签到,获得积分10
16秒前
17秒前
虚心山灵完成签到 ,获得积分20
17秒前
18秒前
白菜发布了新的文献求助30
19秒前
19秒前
xx发布了新的文献求助10
20秒前
Vii应助追寻的白安采纳,获得10
20秒前
科研通AI5应助Laus采纳,获得10
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808