已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Large-scale neuromorphic optoelectronic computing with a reconfigurable diffractive processing unit

现场可编程门阵列 计算机硬件 计算机体系结构
作者
Tiankuang Zhou,Xing Lin,Jiamin Wu,Yitong Chen,Hao Xie,Yipeng Li,Jingtao Fan,Huaqiang Wu,Lu Fang,Qionghai Dai
出处
期刊:arXiv: Image and Video Processing 被引量:19
标识
DOI:10.1038/s41566-021-00796-w
摘要

Application-specific optical processors have been considered disruptive technologies for modern computing that can fundamentally accelerate the development of artificial intelligence (AI) by offering substantially improved computing performance. Recent advancements in optical neural network architectures for neural information processing have been applied to perform various machine learning tasks. However, the existing architectures have limited complexity and performance; and each of them requires its own dedicated design that cannot be reconfigured to switch between different neural network models for different applications after deployment. Here, we propose an optoelectronic reconfigurable computing paradigm by constructing a diffractive processing unit (DPU) that can efficiently support different neural networks and achieve a high model complexity with millions of neurons. It allocates almost all of its computational operations optically and achieves extremely high speed of data modulation and large-scale network parameter updating by dynamically programming optical modulators and photodetectors. We demonstrated the reconfiguration of the DPU to implement various diffractive feedforward and recurrent neural networks and developed a novel adaptive training approach to circumvent the system imperfections. We applied the trained networks for high-speed classifying of handwritten digit images and human action videos over benchmark datasets, and the experimental results revealed a comparable classification accuracy to the electronic computing approaches. Furthermore, our prototype system built with off-the-shelf optoelectronic components surpasses the performance of state-of-the-art graphics processing units (GPUs) by several times on computing speed and more than an order of magnitude on system energy efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
langzfs完成签到,获得积分10
刚刚
赵俊翔完成签到 ,获得积分10
刚刚
科研通AI6应助俊秀的谷云采纳,获得10
2秒前
王婷完成签到 ,获得积分10
3秒前
3秒前
西瓜完成签到 ,获得积分10
4秒前
吴彦祖应助otkur采纳,获得10
4秒前
情怀应助真不错采纳,获得10
4秒前
5秒前
直率孤风发布了新的文献求助10
5秒前
agf发布了新的文献求助10
5秒前
zzyyy完成签到 ,获得积分10
6秒前
Ashley发布了新的文献求助10
8秒前
9秒前
激动的55完成签到 ,获得积分10
11秒前
11秒前
11秒前
13秒前
和谐以冬完成签到 ,获得积分10
14秒前
14秒前
想想发布了新的文献求助10
15秒前
16秒前
17秒前
真不错发布了新的文献求助10
17秒前
sunhhhh完成签到 ,获得积分10
18秒前
慕青应助微笑的傲旋采纳,获得10
19秒前
木风2023完成签到,获得积分10
19秒前
20秒前
狂野雅彤发布了新的文献求助10
21秒前
真不错完成签到,获得积分10
24秒前
思源应助DD采纳,获得10
26秒前
27秒前
27秒前
天天快乐应助好天气采纳,获得10
30秒前
34秒前
CipherSage应助科研通管家采纳,获得10
35秒前
无极微光应助科研通管家采纳,获得20
35秒前
归尘应助科研通管家采纳,获得30
35秒前
归尘应助科研通管家采纳,获得30
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
复杂系统建模与弹性模型研究 2000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1021
睡眠呼吸障碍治疗学 600
Input 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5488216
求助须知:如何正确求助?哪些是违规求助? 4587188
关于积分的说明 14412948
捐赠科研通 4518460
什么是DOI,文献DOI怎么找? 2475790
邀请新用户注册赠送积分活动 1461373
关于科研通互助平台的介绍 1434279