亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Large-scale neuromorphic optoelectronic computing with a reconfigurable diffractive processing unit

现场可编程门阵列 计算机硬件 计算机体系结构
作者
Tiankuang Zhou,Xing Lin,Jiamin Wu,Yitong Chen,Hao Xie,Yipeng Li,Jingtao Fan,Huaqiang Wu,Lu Fang,Qionghai Dai
出处
期刊:arXiv: Image and Video Processing 被引量:19
标识
DOI:10.1038/s41566-021-00796-w
摘要

Application-specific optical processors have been considered disruptive technologies for modern computing that can fundamentally accelerate the development of artificial intelligence (AI) by offering substantially improved computing performance. Recent advancements in optical neural network architectures for neural information processing have been applied to perform various machine learning tasks. However, the existing architectures have limited complexity and performance; and each of them requires its own dedicated design that cannot be reconfigured to switch between different neural network models for different applications after deployment. Here, we propose an optoelectronic reconfigurable computing paradigm by constructing a diffractive processing unit (DPU) that can efficiently support different neural networks and achieve a high model complexity with millions of neurons. It allocates almost all of its computational operations optically and achieves extremely high speed of data modulation and large-scale network parameter updating by dynamically programming optical modulators and photodetectors. We demonstrated the reconfiguration of the DPU to implement various diffractive feedforward and recurrent neural networks and developed a novel adaptive training approach to circumvent the system imperfections. We applied the trained networks for high-speed classifying of handwritten digit images and human action videos over benchmark datasets, and the experimental results revealed a comparable classification accuracy to the electronic computing approaches. Furthermore, our prototype system built with off-the-shelf optoelectronic components surpasses the performance of state-of-the-art graphics processing units (GPUs) by several times on computing speed and more than an order of magnitude on system energy efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
17秒前
muhum完成签到 ,获得积分10
24秒前
Sandy应助科研通管家采纳,获得20
32秒前
大气建辉完成签到 ,获得积分10
32秒前
真真完成签到 ,获得积分10
35秒前
46秒前
58秒前
1分钟前
思源应助彼岸花开采纳,获得200
1分钟前
1分钟前
科研通AI5应助执着南琴采纳,获得10
1分钟前
2分钟前
执着南琴发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
彼岸花开发布了新的文献求助200
2分钟前
Xenogenesis发布了新的文献求助10
3分钟前
Xenogenesis完成签到,获得积分10
3分钟前
今后应助夕阳醉了采纳,获得10
3分钟前
郗妫完成签到,获得积分10
3分钟前
3分钟前
夕阳醉了发布了新的文献求助10
4分钟前
魔笛的云宝完成签到 ,获得积分10
4分钟前
4分钟前
Song0558完成签到 ,获得积分20
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
lzx应助科研通管家采纳,获得100
4分钟前
烟花应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
lzx应助科研通管家采纳,获得100
4分钟前
瑞瑞完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
张泽崇发布了新的文献求助10
5分钟前
6分钟前
吴嘉俊完成签到 ,获得积分10
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
Jj7完成签到,获得积分10
6分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965717
求助须知:如何正确求助?哪些是违规求助? 3510950
关于积分的说明 11155686
捐赠科研通 3245413
什么是DOI,文献DOI怎么找? 1792876
邀请新用户注册赠送积分活动 874181
科研通“疑难数据库(出版商)”最低求助积分说明 804216