重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

A comprehensive review of deep learning in colon cancer

深度学习 结直肠癌 人工智能 卷积神经网络 计算机科学 癌症 医学 机器学习 内科学
作者
İshak Paçal,Derviş Karaboğa,Alper Baştürk,Bahriye Akay,Ufuk Nalbantoğlu
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:126: 104003-104003 被引量:250
标识
DOI:10.1016/j.compbiomed.2020.104003
摘要

Deep learning has emerged as a leading machine learning tool in object detection and has attracted attention with its achievements in progressing medical image analysis. Convolutional Neural Networks (CNNs) are the most preferred method of deep learning algorithms for this purpose and they have an essential role in the detection and potential early diagnosis of colon cancer. In this article, we hope to bring a perspective to progress in this area by reviewing deep learning practices for colon cancer analysis. This study first presents an overview of popular deep learning architectures used in colon cancer analysis. After that, all studies related to colon cancer analysis are collected under the field of colon cancer and deep learning, then they are divided into five categories that are detection, classification, segmentation, survival prediction, and inflammatory bowel diseases. Then, the studies collected under each category are summarized in detail and listed. We conclude our work with a summary of recent deep learning practices for colon cancer analysis, a critical discussion of the challenges faced, and suggestions for future research. This study differs from other studies by including 135 recent academic papers, separating colon cancer into five different classes, and providing a comprehensive structure. We hope that this study is beneficial to researchers interested in using deep learning techniques for the diagnosis of colon cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
超帅鸭子发布了新的文献求助10
1秒前
禾研发布了新的文献求助20
1秒前
yisen完成签到,获得积分10
1秒前
搜集达人应助黄启烽采纳,获得10
2秒前
坐标发布了新的文献求助10
2秒前
3秒前
酷波er应助Gasoline.采纳,获得10
3秒前
Hello应助浊酒采纳,获得10
3秒前
3秒前
4秒前
Vera完成签到,获得积分10
4秒前
芃芃野发布了新的文献求助30
4秒前
科研通AI6应助仙妮宝贝采纳,获得10
4秒前
ggg完成签到,获得积分10
5秒前
5秒前
5秒前
5秒前
intfrac完成签到,获得积分10
5秒前
海绵宝宝的做饭铲完成签到,获得积分10
6秒前
科研通AI6应助雪白的友安采纳,获得10
6秒前
7秒前
深情安青应助无足鸟采纳,获得10
7秒前
情怀应助做锤子的医学采纳,获得10
7秒前
猫儿发布了新的文献求助10
7秒前
温可可发布了新的文献求助10
8秒前
LILI2完成签到,获得积分10
8秒前
慕青应助风清扬采纳,获得10
8秒前
飞快的雁发布了新的文献求助10
8秒前
研友_nVqwxL发布了新的文献求助20
8秒前
8秒前
科研通AI6应助靖哥哥采纳,获得10
9秒前
轩辕士晋完成签到,获得积分10
9秒前
9秒前
9秒前
9秒前
菜菜发布了新的文献求助10
9秒前
可乐发布了新的文献求助10
9秒前
支半雪发布了新的文献求助40
10秒前
OisinLokame发布了新的文献求助10
10秒前
英俊的铭应助祝博恒采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5467049
求助须知:如何正确求助?哪些是违规求助? 4570696
关于积分的说明 14326942
捐赠科研通 4497263
什么是DOI,文献DOI怎么找? 2463804
邀请新用户注册赠送积分活动 1452757
关于科研通互助平台的介绍 1427612