A comprehensive review of deep learning in colon cancer

深度学习 结直肠癌 人工智能 卷积神经网络 计算机科学 癌症 医学 机器学习 内科学
作者
İshak Paçal,Derviş Karaboğa,Alper Baştürk,Bahriye Akay,Ufuk Nalbantoğlu
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:126: 104003-104003 被引量:250
标识
DOI:10.1016/j.compbiomed.2020.104003
摘要

Deep learning has emerged as a leading machine learning tool in object detection and has attracted attention with its achievements in progressing medical image analysis. Convolutional Neural Networks (CNNs) are the most preferred method of deep learning algorithms for this purpose and they have an essential role in the detection and potential early diagnosis of colon cancer. In this article, we hope to bring a perspective to progress in this area by reviewing deep learning practices for colon cancer analysis. This study first presents an overview of popular deep learning architectures used in colon cancer analysis. After that, all studies related to colon cancer analysis are collected under the field of colon cancer and deep learning, then they are divided into five categories that are detection, classification, segmentation, survival prediction, and inflammatory bowel diseases. Then, the studies collected under each category are summarized in detail and listed. We conclude our work with a summary of recent deep learning practices for colon cancer analysis, a critical discussion of the challenges faced, and suggestions for future research. This study differs from other studies by including 135 recent academic papers, separating colon cancer into five different classes, and providing a comprehensive structure. We hope that this study is beneficial to researchers interested in using deep learning techniques for the diagnosis of colon cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LLL发布了新的文献求助10
刚刚
刚刚
Selkie完成签到,获得积分10
刚刚
浮晨发布了新的文献求助10
刚刚
Thy完成签到,获得积分10
1秒前
wanci应助杨小羊采纳,获得10
1秒前
1122完成签到,获得积分10
1秒前
charint发布了新的文献求助10
1秒前
yutj发布了新的文献求助10
1秒前
1秒前
李爱国应助睿_采纳,获得10
1秒前
Passer发布了新的文献求助10
2秒前
3秒前
传奇3应助Hzw采纳,获得10
3秒前
3秒前
3秒前
出门见喜发布了新的文献求助10
3秒前
lipeng发布了新的文献求助10
4秒前
4秒前
4秒前
研友_GZ3zRn完成签到 ,获得积分0
5秒前
orixero应助猪猪hero采纳,获得10
5秒前
科研通AI6应助sw98318采纳,获得10
5秒前
Surpass完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
昕一完成签到,获得积分10
7秒前
7秒前
ZTT完成签到,获得积分10
7秒前
7秒前
7秒前
嘉欣完成签到,获得积分10
7秒前
科研通AI2S应助cherish采纳,获得10
8秒前
8秒前
XFF完成签到,获得积分10
8秒前
杨洋发布了新的文献求助30
9秒前
9秒前
9秒前
10秒前
优秀笑萍发布了新的文献求助10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5532022
求助须知:如何正确求助?哪些是违规求助? 4620823
关于积分的说明 14574972
捐赠科研通 4560552
什么是DOI,文献DOI怎么找? 2498894
邀请新用户注册赠送积分活动 1478828
关于科研通互助平台的介绍 1450125