A comprehensive review of deep learning in colon cancer

深度学习 结直肠癌 人工智能 卷积神经网络 计算机科学 癌症 医学 机器学习 内科学
作者
İshak Paçal,Derviş Karaboğa,Alper Baştürk,Bahriye Akay,Ufuk Nalbantoğlu
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:126: 104003-104003 被引量:250
标识
DOI:10.1016/j.compbiomed.2020.104003
摘要

Deep learning has emerged as a leading machine learning tool in object detection and has attracted attention with its achievements in progressing medical image analysis. Convolutional Neural Networks (CNNs) are the most preferred method of deep learning algorithms for this purpose and they have an essential role in the detection and potential early diagnosis of colon cancer. In this article, we hope to bring a perspective to progress in this area by reviewing deep learning practices for colon cancer analysis. This study first presents an overview of popular deep learning architectures used in colon cancer analysis. After that, all studies related to colon cancer analysis are collected under the field of colon cancer and deep learning, then they are divided into five categories that are detection, classification, segmentation, survival prediction, and inflammatory bowel diseases. Then, the studies collected under each category are summarized in detail and listed. We conclude our work with a summary of recent deep learning practices for colon cancer analysis, a critical discussion of the challenges faced, and suggestions for future research. This study differs from other studies by including 135 recent academic papers, separating colon cancer into five different classes, and providing a comprehensive structure. We hope that this study is beneficial to researchers interested in using deep learning techniques for the diagnosis of colon cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yuyuyuyuyuyuyu完成签到,获得积分10
1秒前
3秒前
Annie发布了新的文献求助10
3秒前
半青一江完成签到 ,获得积分10
5秒前
谦让的牛排完成签到 ,获得积分10
5秒前
夏侯绮山发布了新的文献求助10
6秒前
7秒前
温婉的采蓝完成签到 ,获得积分10
7秒前
Mori关注了科研通微信公众号
7秒前
Akim应助要没时间了采纳,获得10
8秒前
NEW发布了新的文献求助10
10秒前
科研通AI6应助Annie采纳,获得30
12秒前
12秒前
科研通AI2S应助云水雾心采纳,获得10
13秒前
傻子完成签到,获得积分10
14秒前
FashionBoy应助香蕉梨愁采纳,获得10
14秒前
3366ll完成签到 ,获得积分10
16秒前
xiaoxin发布了新的文献求助10
17秒前
YYY完成签到,获得积分10
18秒前
19秒前
21秒前
无极微光应助夏侯绮山采纳,获得20
23秒前
23秒前
24秒前
小金刀完成签到,获得积分10
25秒前
玄风举报高韶涵求助涉嫌违规
25秒前
25秒前
小白发布了新的文献求助30
26秒前
香蕉梨愁发布了新的文献求助10
27秒前
28秒前
ChenYX发布了新的文献求助10
30秒前
ccc1429536273发布了新的文献求助10
30秒前
30秒前
ppbk完成签到 ,获得积分10
30秒前
完美世界应助NEW采纳,获得10
31秒前
31秒前
Megan发布了新的文献求助30
33秒前
34秒前
开心的眼睛完成签到,获得积分10
34秒前
云水雾心发布了新的文献求助10
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5558000
求助须知:如何正确求助?哪些是违规求助? 4642970
关于积分的说明 14669931
捐赠科研通 4584431
什么是DOI,文献DOI怎么找? 2514828
邀请新用户注册赠送积分活动 1489002
关于科研通互助平台的介绍 1459619