A comprehensive review of deep learning in colon cancer

深度学习 结直肠癌 人工智能 卷积神经网络 计算机科学 癌症 医学 机器学习 内科学 数据科学
作者
İshak Paçal,Derviş Karaboğa,Alper Baştürk,Bahriye Akay,Ufuk Nalbantoğlu
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:126: 104003-104003 被引量:132
标识
DOI:10.1016/j.compbiomed.2020.104003
摘要

Deep learning has emerged as a leading machine learning tool in object detection and has attracted attention with its achievements in progressing medical image analysis. Convolutional Neural Networks (CNNs) are the most preferred method of deep learning algorithms for this purpose and they have an essential role in the detection and potential early diagnosis of colon cancer. In this article, we hope to bring a perspective to progress in this area by reviewing deep learning practices for colon cancer analysis. This study first presents an overview of popular deep learning architectures used in colon cancer analysis. After that, all studies related to colon cancer analysis are collected under the field of colon cancer and deep learning, then they are divided into five categories that are detection, classification, segmentation, survival prediction, and inflammatory bowel diseases. Then, the studies collected under each category are summarized in detail and listed. We conclude our work with a summary of recent deep learning practices for colon cancer analysis, a critical discussion of the challenges faced, and suggestions for future research. This study differs from other studies by including 135 recent academic papers, separating colon cancer into five different classes, and providing a comprehensive structure. We hope that this study is beneficial to researchers interested in using deep learning techniques for the diagnosis of colon cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
doudou发布了新的文献求助10
1秒前
万叶关注了科研通微信公众号
4秒前
果冻完成签到 ,获得积分10
5秒前
学术大白发布了新的文献求助10
5秒前
9秒前
李健应助苹果秋灵采纳,获得10
9秒前
10秒前
一口蒜苗完成签到,获得积分10
10秒前
12秒前
城南完成签到,获得积分10
13秒前
英俊的铭应助牛牛眉目采纳,获得10
13秒前
李文霄完成签到 ,获得积分10
13秒前
打打应助研友_kngxbZ采纳,获得10
14秒前
江念发布了新的文献求助30
15秒前
Chambray完成签到,获得积分10
15秒前
Selonfer完成签到,获得积分10
15秒前
17秒前
所所应助banlichen采纳,获得10
17秒前
HHH发布了新的文献求助10
17秒前
Pendragon发布了新的文献求助10
19秒前
充电宝应助加油加油采纳,获得10
21秒前
goldNAN发布了新的文献求助10
23秒前
一棵草完成签到,获得积分10
23秒前
zz应助淡淡的绿柳采纳,获得10
23秒前
26秒前
28秒前
在水一方应助跳跳虎采纳,获得10
28秒前
睿诺应助Chambray采纳,获得10
29秒前
LeonZhang完成签到,获得积分10
29秒前
29秒前
研友_kngxbZ发布了新的文献求助10
30秒前
麦乐提完成签到,获得积分10
31秒前
无聊的万天完成签到,获得积分10
32秒前
32秒前
生动的电脑完成签到,获得积分20
33秒前
加油加油发布了新的文献求助10
33秒前
善学以致用应助2023204306324采纳,获得10
34秒前
WUT完成签到,获得积分10
34秒前
鱼干发布了新的文献求助10
35秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966370
求助须知:如何正确求助?哪些是违规求助? 3511789
关于积分的说明 11159900
捐赠科研通 3246400
什么是DOI,文献DOI怎么找? 1793416
邀请新用户注册赠送积分活动 874427
科研通“疑难数据库(出版商)”最低求助积分说明 804388