A comprehensive review of deep learning in colon cancer

深度学习 结直肠癌 人工智能 卷积神经网络 计算机科学 癌症 医学 机器学习 内科学 数据科学
作者
İshak Paçal,Derviş Karaboğa,Alper Baştürk,Bahriye Akay,Ufuk Nalbantoğlu
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:126: 104003-104003 被引量:132
标识
DOI:10.1016/j.compbiomed.2020.104003
摘要

Deep learning has emerged as a leading machine learning tool in object detection and has attracted attention with its achievements in progressing medical image analysis. Convolutional Neural Networks (CNNs) are the most preferred method of deep learning algorithms for this purpose and they have an essential role in the detection and potential early diagnosis of colon cancer. In this article, we hope to bring a perspective to progress in this area by reviewing deep learning practices for colon cancer analysis. This study first presents an overview of popular deep learning architectures used in colon cancer analysis. After that, all studies related to colon cancer analysis are collected under the field of colon cancer and deep learning, then they are divided into five categories that are detection, classification, segmentation, survival prediction, and inflammatory bowel diseases. Then, the studies collected under each category are summarized in detail and listed. We conclude our work with a summary of recent deep learning practices for colon cancer analysis, a critical discussion of the challenges faced, and suggestions for future research. This study differs from other studies by including 135 recent academic papers, separating colon cancer into five different classes, and providing a comprehensive structure. We hope that this study is beneficial to researchers interested in using deep learning techniques for the diagnosis of colon cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
李健的粉丝团团长应助zhb采纳,获得10
刚刚
Dr.Zou完成签到,获得积分10
刚刚
共享精神应助晨霭微凉采纳,获得10
刚刚
今后应助kento采纳,获得50
1秒前
123发布了新的文献求助10
1秒前
1秒前
ZMO发布了新的文献求助10
1秒前
orangel完成签到,获得积分10
2秒前
yuuu完成签到 ,获得积分10
2秒前
for_abSCI完成签到,获得积分10
2秒前
香蕉觅云应助衡阳采纳,获得10
2秒前
!!完成签到,获得积分20
2秒前
punkhippie完成签到,获得积分10
3秒前
justdoit完成签到,获得积分10
3秒前
3秒前
hu完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
5秒前
陶醉觅夏发布了新的文献求助20
6秒前
852应助研友_LMBAXn采纳,获得10
7秒前
7秒前
7秒前
朴实的小白菜完成签到,获得积分10
7秒前
mpenny77应助背带裤打篮球采纳,获得30
7秒前
F.T完成签到,获得积分10
8秒前
白菜菜和向肉肉完成签到,获得积分10
8秒前
激昂的白凡完成签到,获得积分10
8秒前
luqong发布了新的文献求助10
8秒前
ZMO完成签到,获得积分20
8秒前
陶醉惋清完成签到,获得积分20
9秒前
9秒前
领导范儿应助bbbbb沫采纳,获得10
9秒前
10秒前
可爱的函函应助111采纳,获得10
10秒前
兔子发布了新的文献求助10
10秒前
小小怪发布了新的文献求助20
10秒前
10秒前
高分求助中
Evolution 10000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147582
求助须知:如何正确求助?哪些是违规求助? 2798713
关于积分的说明 7830993
捐赠科研通 2455488
什么是DOI,文献DOI怎么找? 1306841
科研通“疑难数据库(出版商)”最低求助积分说明 627934
版权声明 601587