A comprehensive review of deep learning in colon cancer

深度学习 结直肠癌 人工智能 卷积神经网络 计算机科学 癌症 医学 机器学习 内科学
作者
İshak Paçal,Derviş Karaboğa,Alper Baştürk,Bahriye Akay,Ufuk Nalbantoğlu
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:126: 104003-104003 被引量:250
标识
DOI:10.1016/j.compbiomed.2020.104003
摘要

Deep learning has emerged as a leading machine learning tool in object detection and has attracted attention with its achievements in progressing medical image analysis. Convolutional Neural Networks (CNNs) are the most preferred method of deep learning algorithms for this purpose and they have an essential role in the detection and potential early diagnosis of colon cancer. In this article, we hope to bring a perspective to progress in this area by reviewing deep learning practices for colon cancer analysis. This study first presents an overview of popular deep learning architectures used in colon cancer analysis. After that, all studies related to colon cancer analysis are collected under the field of colon cancer and deep learning, then they are divided into five categories that are detection, classification, segmentation, survival prediction, and inflammatory bowel diseases. Then, the studies collected under each category are summarized in detail and listed. We conclude our work with a summary of recent deep learning practices for colon cancer analysis, a critical discussion of the challenges faced, and suggestions for future research. This study differs from other studies by including 135 recent academic papers, separating colon cancer into five different classes, and providing a comprehensive structure. We hope that this study is beneficial to researchers interested in using deep learning techniques for the diagnosis of colon cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王十三完成签到 ,获得积分10
1秒前
3秒前
5秒前
科研通AI6应助研友_LmAWYL采纳,获得10
5秒前
研友_VZG7GZ应助刘歌采纳,获得10
6秒前
yidi01完成签到,获得积分10
6秒前
7秒前
7秒前
此木本去一应助欣欣子采纳,获得10
8秒前
要减肥小夏完成签到 ,获得积分10
8秒前
高挑的雁风完成签到,获得积分10
9秒前
emanon发布了新的文献求助10
9秒前
唐星煜完成签到 ,获得积分10
10秒前
量子星尘发布了新的文献求助10
11秒前
xiaozy完成签到,获得积分10
11秒前
Stanley发布了新的文献求助10
12秒前
无机盐完成签到,获得积分10
12秒前
尘封雪完成签到,获得积分10
13秒前
13秒前
wtian1221应助Lynth_雪鸮采纳,获得10
13秒前
萝卜完成签到,获得积分10
13秒前
rafaam完成签到,获得积分10
14秒前
Jiaaaa完成签到,获得积分20
15秒前
15秒前
抱抱龙完成签到 ,获得积分10
17秒前
云墨完成签到 ,获得积分10
17秒前
18秒前
刘歌发布了新的文献求助10
18秒前
Stanley完成签到,获得积分20
19秒前
19秒前
YANICE发布了新的文献求助10
19秒前
19秒前
款款发布了新的文献求助10
20秒前
情怀应助emanon采纳,获得10
20秒前
吴筮完成签到,获得积分10
21秒前
22秒前
颿曦完成签到,获得积分10
22秒前
科研通AI2S应助ganhykk采纳,获得10
23秒前
端庄的如霜完成签到,获得积分10
23秒前
24秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5620874
求助须知:如何正确求助?哪些是违规求助? 4705521
关于积分的说明 14932362
捐赠科研通 4763666
什么是DOI,文献DOI怎么找? 2551356
邀请新用户注册赠送积分活动 1513817
关于科研通互助平台的介绍 1474715