IL33 Is a Key Driver of Treatment Resistance of Cancer

钥匙(锁) 癌症 抗性(生态学) 医学 生物 肿瘤科 计算机科学 内科学 计算机安全 生态学
作者
Chie Kudo‐Saito,Takahiro Miyamoto,Hiroshi Imazeki,Hirokazu Shoji,Kazunori Aoki,Narikazu Boku
出处
期刊:Cancer Research [American Association for Cancer Research]
卷期号:80 (10): 1981-1990 被引量:32
标识
DOI:10.1158/0008-5472.can-19-2235
摘要

Abstract Recurrence and treatment resistance are major causes of cancer-associated death. There has been a growing interest in better understanding epithelial–mesenchymal transition, stemness of cancer cells, and exhaustion and dysfunction of the immune system for which numerous genomic, proteomic, microenvironmental, and immunologic mechanisms have been demonstrated. However, practical treatments for such patients have not yet been established. Here we identified IL33 as a key driver of polyploidy, followed by rapid proliferation after treatment. IL33 induction transformed tumor cells into polyploid giant cells, showing abnormal cell cycle without cell division accompanied by Snail deregulation and p53 inactivation; small progeny cells were generated in response to treatment stress. Simultaneously, soluble IL33 was released from tumor cells, leading to expansion of receptor ST2-expressing cells including IL17RB+GATA3+ cells, which promoted tumor progression and metastasis directly and indirectly via induction of immune exhaustion and dysfunction. Blocking IL33 with a specific mAb in murine IL33+ metastatic tumor models abrogated negative consequences and successfully elicited antitumor efficacy induced by other combined treatments. Ex vivo assays using tumor tissues and peripheral blood mononuclear cells of patients with cancer validated the clinical relevancy of these findings. Together, these data suggest that targeting the IL33-ST2 axis is a promising strategy for diagnosis and treatment of patients likely to be resistant to treatments in the clinical settings. Significance: These findings indicate that the functional role of IL33 in cancer polyploidy contributes to intrinsic and extrinsic mechanisms underlying treatment failure.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LX发布了新的文献求助10
刚刚
庄生发布了新的文献求助10
刚刚
Jessie完成签到,获得积分10
刚刚
CC完成签到 ,获得积分10
1秒前
魏凡之完成签到,获得积分10
1秒前
2秒前
陈灵光完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
陈晨发布了新的文献求助10
3秒前
huan发布了新的文献求助10
3秒前
Ma_Cong完成签到,获得积分10
3秒前
wenwenb完成签到,获得积分10
4秒前
why完成签到,获得积分10
4秒前
4秒前
4秒前
4秒前
次我完成签到,获得积分10
5秒前
5秒前
5秒前
Jasper应助zhuanchuanman采纳,获得10
5秒前
5秒前
顾矜应助灯灯采纳,获得10
5秒前
肖意涵完成签到,获得积分20
5秒前
盲目逛恋完成签到,获得积分10
5秒前
未央完成签到,获得积分10
6秒前
Akim应助小于采纳,获得10
6秒前
6秒前
6秒前
6秒前
yjdjskd123完成签到 ,获得积分10
6秒前
ilihe发布了新的文献求助10
7秒前
英俊的铭应助JJ采纳,获得10
7秒前
我是老大应助平常十八采纳,获得10
7秒前
7秒前
8秒前
打打应助风儿采纳,获得10
8秒前
8秒前
Frank应助郝郝采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Process Plant Design for Chemical Engineers 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Signals, Systems, and Signal Processing 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5612728
求助须知:如何正确求助?哪些是违规求助? 4697738
关于积分的说明 14895443
捐赠科研通 4734234
什么是DOI,文献DOI怎么找? 2546654
邀请新用户注册赠送积分活动 1510660
关于科研通互助平台的介绍 1473494