Machine learning for modeled-TIS and overlay reduction

计算机科学 覆盖 还原(数学) 人工智能 人机交互 操作系统 几何学 数学
作者
Shlomit Katz,Boaz Ophir,Udi Shusterman,Anna Golotsvan,Liran Yerushalmi,Efi Megged,Yoav Grauer,Jian Zhang,Alimei Shih,Shiming Wei,Judith Yep,Fiona Leung,Pek Beng Ong
标识
DOI:10.1117/12.2550747
摘要

Tool induced shift (TIS) is a measurement error attributed to tool asymmetry issues and is commonly used to measure the accuracy of metrology tools. Overlay (OVL) measurement inaccuracy is commonly caused by lens aberration, lens alignment, illumination alignment and asymmetries on the measured target. TIS impacts total measurement uncertainty (TMU) and tool-to-tool matching, and TIS variation across wafer can account for inaccuracy, if not fully corrected, as it depends on the incoming process condition. In addition, both lot-to-lot and wafer-to-wafer process variation are influenced by TIS in terms of overlay performance, which also includes metrology tool-to-tool efficiency in terms of throughput. In the past, TIS correction was only done using a small sampling, resulting in additional error in the measurement which was not corrected. Hence, a new methodology is explored to improve overlay measurement accuracy by Modeled-TIS (M-TIS). This paper discusses a new approach of harnessing Machine Learning (ML) algorithms to predict TIS correction on imaging-based overlay (IBO) measurements at the after-develop inspection (ADI) step. KLA's ML algorithm is trained to detect TIS error contributors to overlay measurements by training a model to find the required TIS correction for one wafer. This information, along with additional accuracy metrics, is then used to predict the TIS for other wafers, without having to actually measure the wafers. In this paper, we present the results of a case study focusing on DRAM and 3D NAND production lots.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顺利中蓝完成签到,获得积分10
刚刚
111应助Loik采纳,获得20
刚刚
LLLLL发布了新的文献求助10
刚刚
华仔应助同人一剑采纳,获得10
刚刚
littleJ完成签到,获得积分10
1秒前
1秒前
研友_VZG7GZ应助Araa采纳,获得10
1秒前
郑洋发布了新的文献求助10
1秒前
科目三应助111123123123采纳,获得10
1秒前
jhz完成签到,获得积分10
1秒前
zhouxinxiao完成签到,获得积分10
1秒前
yoyo完成签到,获得积分10
2秒前
2秒前
小高飞飞飞完成签到,获得积分20
2秒前
花花糖果完成签到,获得积分10
3秒前
3秒前
4秒前
4秒前
贪玩翼发布了新的文献求助10
4秒前
阳光凌青完成签到,获得积分10
4秒前
顺利中蓝发布了新的文献求助10
4秒前
5秒前
飘逸问薇完成签到 ,获得积分10
6秒前
7秒前
李梦琦发布了新的文献求助10
7秒前
7秒前
2758543477完成签到,获得积分10
8秒前
letian发布了新的文献求助10
8秒前
飘零枫叶完成签到,获得积分10
8秒前
李爱国应助Later采纳,获得10
8秒前
小李呀发布了新的文献求助10
10秒前
zyf完成签到,获得积分10
10秒前
腼腆的又槐完成签到,获得积分10
10秒前
咩咩媛完成签到,获得积分10
10秒前
成就的白羊完成签到,获得积分10
10秒前
刘洋完成签到,获得积分10
11秒前
艺术家完成签到,获得积分10
11秒前
柳浪完成签到,获得积分10
12秒前
nini发布了新的文献求助10
12秒前
HELAOBAN发布了新的文献求助10
12秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
《Undergraduate Research & the Academic Librarian: Case Studies and Best Practices, Volume 2》 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3299335
求助须知:如何正确求助?哪些是违规求助? 2934244
关于积分的说明 8468073
捐赠科研通 2607711
什么是DOI,文献DOI怎么找? 1423837
科研通“疑难数据库(出版商)”最低求助积分说明 661724
邀请新用户注册赠送积分活动 645397