破损
石墨烯
氧化物
财产(哲学)
人工智能
氢键
纳米尺度
材料科学
纳米结构
机器学习
特征(语言学)
纳米技术
计算机科学
统计物理学
化学
分子
物理
复合材料
哲学
认识论
有机化学
语言学
冶金
作者
Benyamin Motevalli,Baichuan Sun,Amanda S. Barnard
标识
DOI:10.1021/acs.jpcc.9b10615
摘要
Machine learning is a powerful way of uncovering hidden structure/property relationships in nanoscale materials, and it is tempting to assign structural causes to properties based on feature rankings reported by interpretable models. In this study of defective graphene oxide nanoflakes, we use classification, regression, and causal inference to show that not all important structural features directly influence the concentration of broken bonds, as a representative property. We find that while the presence of oxygen is important for actual bond breakage the presence and distribution of hydrogen determines how often bond breakage occurs.
科研通智能强力驱动
Strongly Powered by AbleSci AI