清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Machine learning improves mortality risk prediction after cardiac surgery: Systematic review and meta-analysis

医学 荟萃分析 统计 统计的 逻辑回归 系统回顾 置信区间 贝叶斯概率 可信区间 严格标准化平均差 内科学 梅德林 外科 机器学习 数学 计算机科学 政治学 法学
作者
Umberto Benedetto,Arnaldo Dimagli,Shubhra Sinha,Lucia Cocomello,Ben Gibbison,Massimo Caputo,Tom R. Gaunt,M. Lyon,Chris Holmes,Gianni Angelini
出处
期刊:The Journal of Thoracic and Cardiovascular Surgery [American Association for Thoracic Surgery]
卷期号:163 (6): 2075-2087.e9 被引量:46
标识
DOI:10.1016/j.jtcvs.2020.07.105
摘要

Interest in the usefulness of machine learning (ML) methods for outcomes prediction has continued to increase in recent years. However, the advantage of advanced ML model over traditional logistic regression (LR) remains controversial. We performed a systematic review and meta-analysis of studies comparing the discrimination accuracy between ML models versus LR in predicting operative mortality following cardiac surgery.The present systematic review followed the Preferred Reporting Items for Systematic Reviews and Meta-Analysis statement. Discrimination ability was assessed using the C-statistic. Pooled C-statistics and its 95% credibility interval for ML models and LR were obtained were obtained using a Bayesian framework. Pooled estimates for ML models and LR were compared to inform on difference between the 2 approaches.We identified 459 published citations of which 15 studies met inclusion criteria and were used for the quantitative and qualitative analysis. When the best ML model from individual study was used, meta-analytic estimates showed that ML were associated with a significantly higher C-statistic (ML, 0.88; 95% credibility interval, 0.83-0.93 vs LR, 0.81; 95% credibility interval, 0.77-0.85; P = .03). When individual ML algorithms were instead selected, we found a nonsignificant trend toward better prediction with each of ML algorithms. We found no evidence of publication bias (P = .70).The present findings suggest that when compared with LR, ML models provide better discrimination in mortality prediction after cardiac surgery. However, the magnitude and clinical influence of such an improvement remains uncertain.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
拓跋雨梅完成签到 ,获得积分0
21秒前
郭星星完成签到,获得积分10
24秒前
个性仙人掌完成签到 ,获得积分10
27秒前
Echoheart完成签到,获得积分10
47秒前
咯咯咯完成签到 ,获得积分10
56秒前
淡淡醉波wuliao完成签到 ,获得积分10
1分钟前
even完成签到 ,获得积分10
1分钟前
研友_Z119gZ完成签到 ,获得积分10
1分钟前
沙海沉戈完成签到,获得积分0
1分钟前
Shandongdaxiu完成签到 ,获得积分10
2分钟前
如意的馒头完成签到 ,获得积分10
2分钟前
kenchilie完成签到 ,获得积分10
2分钟前
Summer_Xia完成签到 ,获得积分10
5分钟前
6分钟前
小郭发布了新的文献求助20
6分钟前
不安青牛应助偷西瓜的猹采纳,获得10
6分钟前
6分钟前
小郭发布了新的文献求助10
6分钟前
吉吉完成签到 ,获得积分10
7分钟前
7分钟前
小马甲应助小郭采纳,获得10
7分钟前
apathetic完成签到,获得积分10
7分钟前
7分钟前
妮子拉完成签到,获得积分10
7分钟前
遥感小虫发布了新的文献求助10
7分钟前
8分钟前
紫熊完成签到,获得积分10
8分钟前
8分钟前
LIVE完成签到,获得积分10
8分钟前
8分钟前
Jenny完成签到,获得积分10
9分钟前
刘刘完成签到 ,获得积分10
9分钟前
结实的忆枫完成签到,获得积分10
9分钟前
寻道图强应助结实的忆枫采纳,获得30
10分钟前
amar完成签到 ,获得积分0
10分钟前
10分钟前
11分钟前
11分钟前
12分钟前
月军完成签到,获得积分10
12分钟前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162343
求助须知:如何正确求助?哪些是违规求助? 2813330
关于积分的说明 7899736
捐赠科研通 2472848
什么是DOI,文献DOI怎么找? 1316533
科研通“疑难数据库(出版商)”最低求助积分说明 631375
版权声明 602142