Machine learning improves mortality risk prediction after cardiac surgery: Systematic review and meta-analysis

医学 荟萃分析 统计 统计的 逻辑回归 系统回顾 置信区间 贝叶斯概率 可信区间 严格标准化平均差 内科学 梅德林 外科 机器学习 数学 计算机科学 政治学 法学
作者
Umberto Benedetto,Arnaldo Dimagli,Shubhra Sinha,Lucia Cocomello,Ben Gibbison,Massimo Caputo,Tom R. Gaunt,M. Lyon,Chris Holmes,Gianni Angelini
出处
期刊:The Journal of Thoracic and Cardiovascular Surgery [American Association for Thoracic Surgery]
卷期号:163 (6): 2075-2087.e9 被引量:46
标识
DOI:10.1016/j.jtcvs.2020.07.105
摘要

Interest in the usefulness of machine learning (ML) methods for outcomes prediction has continued to increase in recent years. However, the advantage of advanced ML model over traditional logistic regression (LR) remains controversial. We performed a systematic review and meta-analysis of studies comparing the discrimination accuracy between ML models versus LR in predicting operative mortality following cardiac surgery.The present systematic review followed the Preferred Reporting Items for Systematic Reviews and Meta-Analysis statement. Discrimination ability was assessed using the C-statistic. Pooled C-statistics and its 95% credibility interval for ML models and LR were obtained were obtained using a Bayesian framework. Pooled estimates for ML models and LR were compared to inform on difference between the 2 approaches.We identified 459 published citations of which 15 studies met inclusion criteria and were used for the quantitative and qualitative analysis. When the best ML model from individual study was used, meta-analytic estimates showed that ML were associated with a significantly higher C-statistic (ML, 0.88; 95% credibility interval, 0.83-0.93 vs LR, 0.81; 95% credibility interval, 0.77-0.85; P = .03). When individual ML algorithms were instead selected, we found a nonsignificant trend toward better prediction with each of ML algorithms. We found no evidence of publication bias (P = .70).The present findings suggest that when compared with LR, ML models provide better discrimination in mortality prediction after cardiac surgery. However, the magnitude and clinical influence of such an improvement remains uncertain.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
孙笑川完成签到,获得积分10
1秒前
2秒前
3秒前
孤独念柏完成签到,获得积分10
3秒前
peng完成签到,获得积分10
3秒前
行周关注了科研通微信公众号
3秒前
典雅的夜梦完成签到 ,获得积分10
4秒前
活泼的向日葵完成签到,获得积分10
4秒前
6秒前
7秒前
萱棚发布了新的文献求助10
7秒前
怕黑的芫荽完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
linyu发布了新的文献求助10
10秒前
海绵宝宝完成签到,获得积分20
10秒前
北辰完成签到,获得积分20
11秒前
草木发布了新的文献求助10
13秒前
高贵梦安完成签到,获得积分10
13秒前
蒋若风发布了新的文献求助10
13秒前
鑫光熠熠完成签到 ,获得积分10
14秒前
左右发布了新的文献求助10
14秒前
青鱼完成签到,获得积分10
16秒前
忧伤的天真完成签到,获得积分10
16秒前
xsc完成签到,获得积分10
16秒前
百变小王111完成签到,获得积分10
17秒前
19秒前
Solaris完成签到,获得积分10
20秒前
21秒前
左右完成签到,获得积分10
22秒前
111完成签到,获得积分10
24秒前
默默襄发布了新的文献求助10
26秒前
XudongHou发布了新的文献求助30
27秒前
momoer关注了科研通微信公众号
28秒前
坚强的玉米完成签到 ,获得积分10
29秒前
30秒前
马鸣浩完成签到 ,获得积分10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600866
求助须知:如何正确求助?哪些是违规求助? 4686434
关于积分的说明 14843743
捐赠科研通 4678603
什么是DOI,文献DOI怎么找? 2539007
邀请新用户注册赠送积分活动 1505954
关于科研通互助平台的介绍 1471241