亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine learning improves mortality risk prediction after cardiac surgery: Systematic review and meta-analysis

医学 荟萃分析 统计 统计的 逻辑回归 系统回顾 置信区间 贝叶斯概率 可信区间 严格标准化平均差 内科学 梅德林 外科 机器学习 数学 计算机科学 政治学 法学
作者
Umberto Benedetto,Arnaldo Dimagli,Shubhra Sinha,Lucia Cocomello,Ben Gibbison,Massimo Caputo,Tom R. Gaunt,M. Lyon,Chris Holmes,Gianni Angelini
出处
期刊:The Journal of Thoracic and Cardiovascular Surgery [Elsevier BV]
卷期号:163 (6): 2075-2087.e9 被引量:46
标识
DOI:10.1016/j.jtcvs.2020.07.105
摘要

Interest in the usefulness of machine learning (ML) methods for outcomes prediction has continued to increase in recent years. However, the advantage of advanced ML model over traditional logistic regression (LR) remains controversial. We performed a systematic review and meta-analysis of studies comparing the discrimination accuracy between ML models versus LR in predicting operative mortality following cardiac surgery.The present systematic review followed the Preferred Reporting Items for Systematic Reviews and Meta-Analysis statement. Discrimination ability was assessed using the C-statistic. Pooled C-statistics and its 95% credibility interval for ML models and LR were obtained were obtained using a Bayesian framework. Pooled estimates for ML models and LR were compared to inform on difference between the 2 approaches.We identified 459 published citations of which 15 studies met inclusion criteria and were used for the quantitative and qualitative analysis. When the best ML model from individual study was used, meta-analytic estimates showed that ML were associated with a significantly higher C-statistic (ML, 0.88; 95% credibility interval, 0.83-0.93 vs LR, 0.81; 95% credibility interval, 0.77-0.85; P = .03). When individual ML algorithms were instead selected, we found a nonsignificant trend toward better prediction with each of ML algorithms. We found no evidence of publication bias (P = .70).The present findings suggest that when compared with LR, ML models provide better discrimination in mortality prediction after cardiac surgery. However, the magnitude and clinical influence of such an improvement remains uncertain.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
默默完成签到 ,获得积分10
12秒前
43秒前
领导范儿应助Frank采纳,获得10
44秒前
52秒前
57秒前
58秒前
Frank发布了新的文献求助10
1分钟前
joanna完成签到,获得积分10
1分钟前
科研通AI5应助lj采纳,获得10
2分钟前
3分钟前
3分钟前
3分钟前
大川页完成签到,获得积分10
4分钟前
lanxinge完成签到 ,获得积分10
4分钟前
玄音完成签到,获得积分10
5分钟前
汉堡包应助通义千问采纳,获得10
5分钟前
隐形曼青应助小米辣采纳,获得30
6分钟前
7分钟前
通义千问发布了新的文献求助10
7分钟前
柔弱藏今发布了新的文献求助10
7分钟前
小米辣完成签到,获得积分10
7分钟前
7分钟前
吃了就会胖完成签到 ,获得积分10
7分钟前
小米辣发布了新的文献求助30
7分钟前
dream完成签到 ,获得积分10
7分钟前
8分钟前
8分钟前
丫子天空发布了新的文献求助10
8分钟前
8分钟前
lzxbarry应助andrele采纳,获得30
8分钟前
燕子完成签到 ,获得积分10
9分钟前
10分钟前
10分钟前
呆萌的鼠标完成签到 ,获得积分0
10分钟前
10分钟前
似水无痕完成签到,获得积分10
10分钟前
Anto完成签到,获得积分10
10分钟前
kuoping完成签到,获得积分0
10分钟前
李健应助科研通管家采纳,获得10
10分钟前
丫子天空完成签到,获得积分20
10分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4569156
求助须知:如何正确求助?哪些是违规求助? 3991431
关于积分的说明 12355821
捐赠科研通 3663624
什么是DOI,文献DOI怎么找? 2019024
邀请新用户注册赠送积分活动 1053468
科研通“疑难数据库(出版商)”最低求助积分说明 941000