Machine learning improves mortality risk prediction after cardiac surgery: Systematic review and meta-analysis

医学 荟萃分析 统计 统计的 逻辑回归 系统回顾 置信区间 贝叶斯概率 可信区间 严格标准化平均差 内科学 梅德林 外科 机器学习 数学 计算机科学 政治学 法学
作者
Umberto Benedetto,Arnaldo Dimagli,Shubhra Sinha,Lucia Cocomello,Ben Gibbison,Massimo Caputo,Tom R. Gaunt,M. Lyon,Chris Holmes,Gianni Angelini
出处
期刊:The Journal of Thoracic and Cardiovascular Surgery [American Association for Thoracic Surgery]
卷期号:163 (6): 2075-2087.e9 被引量:46
标识
DOI:10.1016/j.jtcvs.2020.07.105
摘要

Interest in the usefulness of machine learning (ML) methods for outcomes prediction has continued to increase in recent years. However, the advantage of advanced ML model over traditional logistic regression (LR) remains controversial. We performed a systematic review and meta-analysis of studies comparing the discrimination accuracy between ML models versus LR in predicting operative mortality following cardiac surgery.The present systematic review followed the Preferred Reporting Items for Systematic Reviews and Meta-Analysis statement. Discrimination ability was assessed using the C-statistic. Pooled C-statistics and its 95% credibility interval for ML models and LR were obtained were obtained using a Bayesian framework. Pooled estimates for ML models and LR were compared to inform on difference between the 2 approaches.We identified 459 published citations of which 15 studies met inclusion criteria and were used for the quantitative and qualitative analysis. When the best ML model from individual study was used, meta-analytic estimates showed that ML were associated with a significantly higher C-statistic (ML, 0.88; 95% credibility interval, 0.83-0.93 vs LR, 0.81; 95% credibility interval, 0.77-0.85; P = .03). When individual ML algorithms were instead selected, we found a nonsignificant trend toward better prediction with each of ML algorithms. We found no evidence of publication bias (P = .70).The present findings suggest that when compared with LR, ML models provide better discrimination in mortality prediction after cardiac surgery. However, the magnitude and clinical influence of such an improvement remains uncertain.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
榆木小鸟完成签到 ,获得积分10
刚刚
科研通AI5应助徐徐采纳,获得10
刚刚
1秒前
1秒前
zee完成签到 ,获得积分20
1秒前
单薄明雪完成签到,获得积分10
1秒前
2秒前
万能图书馆应助Godspeed采纳,获得10
2秒前
孟陬十一发布了新的文献求助10
2秒前
vivi猫小咪完成签到,获得积分10
2秒前
2秒前
bkagyin应助amumu采纳,获得10
3秒前
南方姑娘发布了新的文献求助10
3秒前
3秒前
3秒前
3秒前
丘比特应助Wu采纳,获得10
3秒前
4秒前
乐乐应助luuuuuing采纳,获得30
4秒前
5秒前
丘比特应助anan采纳,获得10
5秒前
5秒前
动人的老黑完成签到 ,获得积分10
6秒前
星星泡饭发布了新的文献求助10
6秒前
7秒前
Silence完成签到,获得积分10
7秒前
yan儿发布了新的文献求助10
8秒前
pearl完成签到,获得积分10
9秒前
hahah发布了新的文献求助10
9秒前
请叫我风吹麦浪应助胖豆采纳,获得10
9秒前
无花果应助幸福胡萝卜采纳,获得10
9秒前
10秒前
卡卡发布了新的文献求助10
10秒前
wanci应助风趣的天真采纳,获得10
10秒前
Silence发布了新的文献求助10
10秒前
清爽老九发布了新的文献求助100
10秒前
11秒前
衔尾蛇发布了新的文献求助10
11秒前
小蔡会有猫的完成签到,获得积分10
11秒前
zhai发布了新的文献求助10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762