Machine learning improves mortality risk prediction after cardiac surgery: Systematic review and meta-analysis

医学 荟萃分析 统计 统计的 逻辑回归 系统回顾 置信区间 贝叶斯概率 可信区间 严格标准化平均差 内科学 梅德林 外科 机器学习 数学 计算机科学 政治学 法学
作者
Umberto Benedetto,Arnaldo Dimagli,Shubhra Sinha,Lucia Cocomello,Ben Gibbison,Massimo Caputo,Tom R. Gaunt,M. Lyon,Chris Holmes,Gianni Angelini
出处
期刊:The Journal of Thoracic and Cardiovascular Surgery [Elsevier BV]
卷期号:163 (6): 2075-2087.e9 被引量:46
标识
DOI:10.1016/j.jtcvs.2020.07.105
摘要

Interest in the usefulness of machine learning (ML) methods for outcomes prediction has continued to increase in recent years. However, the advantage of advanced ML model over traditional logistic regression (LR) remains controversial. We performed a systematic review and meta-analysis of studies comparing the discrimination accuracy between ML models versus LR in predicting operative mortality following cardiac surgery.The present systematic review followed the Preferred Reporting Items for Systematic Reviews and Meta-Analysis statement. Discrimination ability was assessed using the C-statistic. Pooled C-statistics and its 95% credibility interval for ML models and LR were obtained were obtained using a Bayesian framework. Pooled estimates for ML models and LR were compared to inform on difference between the 2 approaches.We identified 459 published citations of which 15 studies met inclusion criteria and were used for the quantitative and qualitative analysis. When the best ML model from individual study was used, meta-analytic estimates showed that ML were associated with a significantly higher C-statistic (ML, 0.88; 95% credibility interval, 0.83-0.93 vs LR, 0.81; 95% credibility interval, 0.77-0.85; P = .03). When individual ML algorithms were instead selected, we found a nonsignificant trend toward better prediction with each of ML algorithms. We found no evidence of publication bias (P = .70).The present findings suggest that when compared with LR, ML models provide better discrimination in mortality prediction after cardiac surgery. However, the magnitude and clinical influence of such an improvement remains uncertain.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
李健应助glacial采纳,获得10
3秒前
CipherSage应助xxz采纳,获得10
3秒前
4秒前
英姑应助葛广奔采纳,获得10
4秒前
成就半双发布了新的文献求助10
4秒前
5秒前
5秒前
5秒前
6秒前
平淡小凝完成签到,获得积分10
6秒前
6秒前
无花果应助王铭智采纳,获得10
6秒前
zwy完成签到,获得积分10
7秒前
今天吃啥发布了新的文献求助30
7秒前
在水一方应助yao采纳,获得10
7秒前
浮游应助哈尼采纳,获得10
7秒前
Satan完成签到,获得积分10
7秒前
zhuyuxin发布了新的文献求助10
8秒前
8秒前
9秒前
10秒前
乐观无心发布了新的文献求助10
10秒前
韩立发布了新的文献求助10
11秒前
虞丹萱发布了新的文献求助10
11秒前
十月完成签到 ,获得积分10
11秒前
NANA完成签到,获得积分20
11秒前
张长江发布了新的文献求助10
11秒前
曲淳发布了新的文献求助10
12秒前
慕青应助听话的富采纳,获得10
12秒前
13秒前
13秒前
YYYYYY完成签到,获得积分10
15秒前
meant发布了新的文献求助10
15秒前
16秒前
书上总会写到浪漫完成签到,获得积分10
17秒前
18秒前
ding应助自觉博超采纳,获得10
18秒前
zhuyuxin完成签到,获得积分10
18秒前
时尚的飞机完成签到,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Investigative Interviewing: Psychology and Practice 300
Atlas of Anatomy (Fifth Edition) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5287058
求助须知:如何正确求助?哪些是违规求助? 4439572
关于积分的说明 13822123
捐赠科研通 4321561
什么是DOI,文献DOI怎么找? 2372031
邀请新用户注册赠送积分活动 1367525
关于科研通互助平台的介绍 1331007