Machine learning improves mortality risk prediction after cardiac surgery: Systematic review and meta-analysis

医学 荟萃分析 统计 统计的 逻辑回归 系统回顾 置信区间 贝叶斯概率 可信区间 严格标准化平均差 内科学 梅德林 外科 机器学习 数学 计算机科学 政治学 法学
作者
Umberto Benedetto,Arnaldo Dimagli,Shubhra Sinha,Lucia Cocomello,Ben Gibbison,Massimo Caputo,Tom R. Gaunt,M. Lyon,Chris Holmes,Gianni Angelini
出处
期刊:The Journal of Thoracic and Cardiovascular Surgery [Elsevier BV]
卷期号:163 (6): 2075-2087.e9 被引量:46
标识
DOI:10.1016/j.jtcvs.2020.07.105
摘要

Interest in the usefulness of machine learning (ML) methods for outcomes prediction has continued to increase in recent years. However, the advantage of advanced ML model over traditional logistic regression (LR) remains controversial. We performed a systematic review and meta-analysis of studies comparing the discrimination accuracy between ML models versus LR in predicting operative mortality following cardiac surgery.The present systematic review followed the Preferred Reporting Items for Systematic Reviews and Meta-Analysis statement. Discrimination ability was assessed using the C-statistic. Pooled C-statistics and its 95% credibility interval for ML models and LR were obtained were obtained using a Bayesian framework. Pooled estimates for ML models and LR were compared to inform on difference between the 2 approaches.We identified 459 published citations of which 15 studies met inclusion criteria and were used for the quantitative and qualitative analysis. When the best ML model from individual study was used, meta-analytic estimates showed that ML were associated with a significantly higher C-statistic (ML, 0.88; 95% credibility interval, 0.83-0.93 vs LR, 0.81; 95% credibility interval, 0.77-0.85; P = .03). When individual ML algorithms were instead selected, we found a nonsignificant trend toward better prediction with each of ML algorithms. We found no evidence of publication bias (P = .70).The present findings suggest that when compared with LR, ML models provide better discrimination in mortality prediction after cardiac surgery. However, the magnitude and clinical influence of such an improvement remains uncertain.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
董科研严发布了新的文献求助10
1秒前
2秒前
乱世才子发布了新的文献求助10
3秒前
任秦发布了新的文献求助10
4秒前
无敌幸运儿完成签到 ,获得积分10
4秒前
熊建华发布了新的文献求助10
4秒前
kk完成签到,获得积分10
6秒前
7秒前
7秒前
李某某完成签到 ,获得积分10
8秒前
8秒前
小杭76应助董科研严采纳,获得10
8秒前
9秒前
10秒前
10秒前
10秒前
11秒前
Halo完成签到 ,获得积分10
11秒前
量子星尘发布了新的文献求助10
11秒前
小杭76应助你猜个g采纳,获得10
11秒前
12秒前
13秒前
乱世才子完成签到,获得积分10
13秒前
南祎完成签到 ,获得积分10
14秒前
Owen应助入骨采纳,获得10
14秒前
默默荔枝完成签到,获得积分10
14秒前
熊建华完成签到,获得积分10
15秒前
Zx_1993应助phl采纳,获得10
15秒前
田甜甜完成签到 ,获得积分10
17秒前
科研通AI6应助wwz采纳,获得10
17秒前
浮游应助yuxuan采纳,获得10
17秒前
warmth发布了新的文献求助10
17秒前
科目三应助昏睡的小蚂蚁采纳,获得10
20秒前
21秒前
bkagyin应助kxxxxxx采纳,获得10
21秒前
量子星尘发布了新的文献求助150
22秒前
22秒前
伶俐乌完成签到 ,获得积分20
24秒前
xu1227完成签到,获得积分10
24秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
解放军总医院眼科医学部病例精解 1000
温州医科大学附属眼视光医院斜弱视与双眼视病例精解 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
translating meaning 500
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4896177
求助须知:如何正确求助?哪些是违规求助? 4177912
关于积分的说明 12969523
捐赠科研通 3941127
什么是DOI,文献DOI怎么找? 2162106
邀请新用户注册赠送积分活动 1180588
关于科研通互助平台的介绍 1086117