已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Machine learning improves mortality risk prediction after cardiac surgery: Systematic review and meta-analysis

医学 荟萃分析 统计 统计的 逻辑回归 系统回顾 置信区间 贝叶斯概率 可信区间 严格标准化平均差 内科学 梅德林 外科 机器学习 数学 计算机科学 政治学 法学
作者
Umberto Benedetto,Arnaldo Dimagli,Shubhra Sinha,Lucia Cocomello,Ben Gibbison,Massimo Caputo,Tom R. Gaunt,M. Lyon,Chris Holmes,Gianni Angelini
出处
期刊:The Journal of Thoracic and Cardiovascular Surgery [American Association for Thoracic Surgery]
卷期号:163 (6): 2075-2087.e9 被引量:46
标识
DOI:10.1016/j.jtcvs.2020.07.105
摘要

Interest in the usefulness of machine learning (ML) methods for outcomes prediction has continued to increase in recent years. However, the advantage of advanced ML model over traditional logistic regression (LR) remains controversial. We performed a systematic review and meta-analysis of studies comparing the discrimination accuracy between ML models versus LR in predicting operative mortality following cardiac surgery.The present systematic review followed the Preferred Reporting Items for Systematic Reviews and Meta-Analysis statement. Discrimination ability was assessed using the C-statistic. Pooled C-statistics and its 95% credibility interval for ML models and LR were obtained were obtained using a Bayesian framework. Pooled estimates for ML models and LR were compared to inform on difference between the 2 approaches.We identified 459 published citations of which 15 studies met inclusion criteria and were used for the quantitative and qualitative analysis. When the best ML model from individual study was used, meta-analytic estimates showed that ML were associated with a significantly higher C-statistic (ML, 0.88; 95% credibility interval, 0.83-0.93 vs LR, 0.81; 95% credibility interval, 0.77-0.85; P = .03). When individual ML algorithms were instead selected, we found a nonsignificant trend toward better prediction with each of ML algorithms. We found no evidence of publication bias (P = .70).The present findings suggest that when compared with LR, ML models provide better discrimination in mortality prediction after cardiac surgery. However, the magnitude and clinical influence of such an improvement remains uncertain.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liujinyu关注了科研通微信公众号
刚刚
2秒前
3秒前
7秒前
单薄乐珍完成签到 ,获得积分0
8秒前
993494543发布了新的文献求助10
8秒前
包包琪完成签到 ,获得积分10
10秒前
皮皮发布了新的文献求助10
12秒前
12秒前
汉堡包应助深海学龙采纳,获得10
12秒前
爱卿5271完成签到,获得积分0
12秒前
逮劳完成签到 ,获得积分10
15秒前
风趣凤完成签到,获得积分20
16秒前
雪糕发布了新的文献求助20
17秒前
19秒前
慕玖淇完成签到 ,获得积分10
24秒前
24秒前
风趣凤发布了新的文献求助30
25秒前
睁眼就玩抽空学习完成签到,获得积分10
29秒前
善学以致用应助fay采纳,获得10
29秒前
123456777完成签到 ,获得积分0
32秒前
Paris完成签到 ,获得积分10
35秒前
皮皮完成签到,获得积分20
39秒前
沉默御姐完成签到 ,获得积分10
41秒前
domingo完成签到,获得积分10
42秒前
44秒前
TYW完成签到,获得积分10
46秒前
鬼笔环肽完成签到 ,获得积分10
46秒前
九月亦星完成签到 ,获得积分10
50秒前
默默完成签到,获得积分20
50秒前
杜文倩完成签到 ,获得积分10
50秒前
大学生完成签到 ,获得积分10
59秒前
liujinyu完成签到,获得积分20
1分钟前
勤奋的立果完成签到 ,获得积分10
1分钟前
梦醒完成签到,获得积分10
1分钟前
wqmdd发布了新的文献求助10
1分钟前
Ling完成签到,获得积分10
1分钟前
1分钟前
cc77发布了新的文献求助10
1分钟前
月亮邮递员完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5426229
求助须知:如何正确求助?哪些是违规求助? 4540019
关于积分的说明 14171354
捐赠科研通 4457809
什么是DOI,文献DOI怎么找? 2444671
邀请新用户注册赠送积分活动 1435613
关于科研通互助平台的介绍 1413151