A universal test for the forensic identification of all main body fluids including urine

体液 尿 法医鉴定 精液 唾液 化学计量学 犯罪现场 鉴定(生物学) 汗水 色谱法 计算机科学 生理学 医学 化学 病理 生物 心理学 内科学 男科 犯罪学 植物 遗传学
作者
Bhavik Vyas,Lenka Halámková,Igor K. Lednev
出处
期刊:Forensic Chemistry [Elsevier]
卷期号:20: 100247-100247 被引量:27
标识
DOI:10.1016/j.forc.2020.100247
摘要

A critical aspect of forensic investigation is to detect and identify body fluid stains and preserve them for DNA extraction. The types of body fluid stains commonly found at a crime scene include blood, saliva, semen, sweat, vaginal fluid, and urine. Identification of a stain can be difficult as current methods are body fluid specific and mostly destructive. In an effort to develop a universal, confirmatory and nondestructive approach which can identify and differentiate body fluids Muro et al. (2016), combined Raman spectroscopy and chemometrics to build a statistical model which could differentiate peripheral blood, saliva, semen, sweat, and vaginal fluid. However, this model did not include urine. Urine can be vital evidence in cases of correctional officers being assaulted with urine bombs by prisoners, as well as in sexual assault cases. Recent studies have also shown that DNA can be extracted from a dried urine sample. In this study, we have combined the Raman spectral dataset collected by Muro et al. with Raman spectral data collected from 27 urine samples from different donors to build calibration and validation datasets. Chemometrics was applied to build an enhanced statistical model which can identify and differentiate all main body fluids including peripheral blood, saliva, semen, sweat, vaginal fluid, and urine. This classification model offers a universal, single step, non-destructive, and robust technique with 100% accuracy for sample identification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_8yN60L完成签到,获得积分10
刚刚
Franny完成签到,获得积分10
1秒前
TT应助微风采纳,获得20
3秒前
winni完成签到,获得积分10
3秒前
sissi完成签到,获得积分10
3秒前
只A不B应助summer采纳,获得10
3秒前
研友_nPPERn完成签到,获得积分10
4秒前
优雅沛文完成签到 ,获得积分10
4秒前
JamesPei应助dianze采纳,获得10
5秒前
5秒前
春国应助超帅尔康采纳,获得10
6秒前
赘婿应助超帅尔康采纳,获得10
6秒前
福尔摩琪完成签到,获得积分10
6秒前
6秒前
chemier027完成签到,获得积分10
7秒前
Hjj完成签到,获得积分10
7秒前
Bing发布了新的文献求助10
7秒前
雪凝清霜应助科研通管家采纳,获得10
9秒前
bkagyin应助科研通管家采纳,获得10
9秒前
jiejie完成签到,获得积分10
9秒前
orixero应助顺利的源智采纳,获得10
9秒前
南风知我意完成签到,获得积分10
9秒前
10秒前
花花发布了新的文献求助10
11秒前
服部平次完成签到,获得积分10
12秒前
稳赚赚完成签到,获得积分10
13秒前
monokurodream完成签到,获得积分10
14秒前
佩佩发布了新的文献求助10
16秒前
今后应助典雅的俊驰采纳,获得10
16秒前
小小戴应助乐观的海采纳,获得10
17秒前
SciGPT应助DY采纳,获得10
17秒前
18秒前
和谐灯泡完成签到,获得积分10
18秒前
柚子皮完成签到,获得积分10
18秒前
折花浅笑完成签到,获得积分10
18秒前
舒心如凡完成签到,获得积分10
18秒前
你笑一下嘛zz完成签到,获得积分10
19秒前
19秒前
冰姗完成签到,获得积分10
19秒前
彭于晏应助琉璃岁月采纳,获得10
19秒前
高分求助中
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Zeitschrift für Orient-Archäologie 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Equality: What It Means and Why It Matters 300
A new Species and a key to Indian species of Heirodula Burmeister (Mantodea: Mantidae) 300
Apply error vector measurements in communications design 300
Synchrotron X-Ray Methods in Clay Science 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3347218
求助须知:如何正确求助?哪些是违规求助? 2973707
关于积分的说明 8660707
捐赠科研通 2654207
什么是DOI,文献DOI怎么找? 1453525
科研通“疑难数据库(出版商)”最低求助积分说明 672939
邀请新用户注册赠送积分活动 663018