弹道
数学优化
计算机科学
二次规划
采样(信号处理)
灵活性(工程)
随机性
维数之咒
水准点(测量)
分解
运动规划
规划师
二次方程
集合(抽象数据类型)
轨迹优化
数学
人工智能
机器人
探测器
生态学
几何学
地理
程序设计语言
大地测量学
物理
天文
统计
最优控制
生物
电信
作者
Bai Li,Qi Kong,Youmin Zhang,Zili Shao,Yumeng Wang,Xiaoyan Peng,Daxun Yan
标识
DOI:10.1109/case48305.2020.9217044
摘要
On-road trajectory planning is a critical module in an autonomous driving system. Instead of using a path-velocity decomposition or longitudinal-lateral decomposition strategy, this work aims to find a trajectory directly. We adopt a sampleand-search planner to get a coarse trajectory and then polish it via numerical optimization. Among the predominant sampleand-search planners, most of the sampling operations are not flexible, which inevitably lead to a solution failure if the sampling density is low, and suffer from the curse of dimensionality if the sampling density is set high. This work proposes a modified RRT* for trajectory search, aiming to promote the sampling flexibility and to get rid of the search randomness. A quadratic program (QP) based smoother is proposed to refine the coarse trajectory. Herein, the scale of the QP problem is fixed and tractable, and the feasibility of the QP problem is always guaranteed.
科研通智能强力驱动
Strongly Powered by AbleSci AI