均方误差
数学
平均绝对百分比误差
随机森林
统计
凸壳
相关系数
平均绝对误差
回归
人工智能
计算机科学
正多边形
几何学
作者
Vanessa Weber,Fabricio de Lima Weber,Adair da Silva Oliveira,Gilberto Astolfi,Geazy Vilharva Menezes,João Vitor de Andrade Porto,Fábio Prestes Cesar Rezende,Pedro Henrique de Moraes,Edson Takashi Matsubara,Rodrigo Gonçalves Mateus,Thiago Luís Alves Campos de Araújo,Luiz Otávio Campos da Silva,Eduardo Quirino Arguelho de Queiroz,U. G. P. de Abreu,Rodrigo da Costa Gomes,Hemerson Pistori
标识
DOI:10.1016/j.compag.2020.105804
摘要
Monitoring the weight of beef cattle is important for productive strategies. The main goal of this work was to automatically extract measurements from 2D images of the dorsal area of Nellore cattle to estimate the weight of these cattle using regression algorithms. For this purpose, Euclidean distances from points generated by the Active Contour Model, together with features obtained from the dorsal Convex Hull, were selected. These were submitted to Bagging, Regression by Discretization and Random Forest algorithms for analysis of the predicted error metrics. The Bagging algorithm showed the best results, with Mean Absolute Error (MAE) of 13.44 kg (±2.76), Square Root of the Mean Error (RMSE) of 15.88 kg (±2.86), Mean Absolute Percentage Error (MAPE) of 2.27% and correlation coefficient at 0.75.
科研通智能强力驱动
Strongly Powered by AbleSci AI