Plant Genetic Networks Shaping Phyllosphere Microbial Community

生物 叶圈 进化生物学 生态学 遗传学 细菌
作者
Sara Shakir,Syed Shan‐e‐Ali Zaidi,Franciska T. de Vries,Shahid Mansoor
出处
期刊:Trends in Genetics [Elsevier BV]
卷期号:37 (4): 306-316 被引量:45
标识
DOI:10.1016/j.tig.2020.09.010
摘要

Plant immunity networks maintain microbial homeostasis in the phyllosphere, which in turn affects the plant health. Plant exudation and volatiles significantly shape the microbiome structure and composition. Various environmental stresses shape the complex interaction between phyllosphere microbiome and plant immunity. Understanding the molecular basis of plant–microbe and microbe–microbe interactions will help elucidate their impact on plant fitness. Recent advances utilizing synthetic microbial community combined with omics tools (such as metagenomics and metabolomics) provide important insights into the physiology and functionality of the phyllosphere microbiome. An integrated knowledge of multiomics combined with synthetic community approach can help determine the individual as well as community level contribution of phyllosphere microbiome in the host fitness. Microbiome engineering can reshape the microbial composition in the phyllosphere, and holds potential for large-scale microbiome research and reconfiguration of phyllosphere microbiome with desired traits to fight plant stresses. Phyllosphere microbial communities inhabit the aerial plant parts, such as leaves and flowers, where they form complex molecular interactions with the host plant. Contrary to the relatively well-studied rhizosphere microbiome, scientists are just starting to understand, and potentially utilize, the phyllosphere microbiome. In this article, we summarize the recent studies that have provided novel insights into the mechanism of the host genotype shaping the phyllosphere microbiome and the possibility to select a stable and well-adapted microbiome. We also discuss the most pressing gaps in our knowledge and identify the most promising research directions and tools for understanding the assembly and function of phyllosphere microbiomes – this understanding is necessary if we are to harness phyllosphere microbiomes for improving plant growth and health in managed systems. Phyllosphere microbial communities inhabit the aerial plant parts, such as leaves and flowers, where they form complex molecular interactions with the host plant. Contrary to the relatively well-studied rhizosphere microbiome, scientists are just starting to understand, and potentially utilize, the phyllosphere microbiome. In this article, we summarize the recent studies that have provided novel insights into the mechanism of the host genotype shaping the phyllosphere microbiome and the possibility to select a stable and well-adapted microbiome. We also discuss the most pressing gaps in our knowledge and identify the most promising research directions and tools for understanding the assembly and function of phyllosphere microbiomes – this understanding is necessary if we are to harness phyllosphere microbiomes for improving plant growth and health in managed systems. a change in global or regional climate patterns, in particular a change apparent from the mid to late 20th century onwards and attributed largely to the increased levels of atmospheric carbon dioxide produced by the use of fossil fuels. a resistance mechanism in plants that is activated by infection. Its mode of action does not depend on direct killing or inhibition of the invading pathogen, but rather on increasing physical or chemical barrier of the host plant. relating to or denoting an environment for rearing or culturing organisms in which all the microorganisms are either known or excluded. the study of microbes in their natural living environment, which involves the complex microbial communities in which they usually exist. the large-scale study of small molecules, commonly known as metabolites, within cells, biofluids, tissues or organisms. Collectively, these small molecules and their interactions within a biological system are known as the metabolome. the combination of metagenomics and metaproteomics that studies the whole genome and proteome; in this article this refers to studying the microbial community in order to understand their physiology. plants immediate defense response that recognizes pathogen-associated molecules and activates physical, chemical and cellular defenses against pathogens. the 0.5–4 mm soil zone surrounding plant roots that is strongly affected by root activities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zzz完成签到,获得积分10
1秒前
1秒前
半夏完成签到,获得积分20
2秒前
小蘑菇应助冷静采纳,获得10
2秒前
wanci应助自然卷卷卷采纳,获得10
5秒前
科研通AI5应助兴奋的白桃采纳,获得10
5秒前
5秒前
ZZ发布了新的文献求助10
5秒前
明年今日完成签到,获得积分10
5秒前
曹小仙男发布了新的文献求助10
5秒前
5秒前
5秒前
6秒前
6秒前
找文献啊找文献完成签到,获得积分0
7秒前
8秒前
少少发布了新的文献求助10
9秒前
lilyz求学发布了新的文献求助10
9秒前
10秒前
Eleven发布了新的文献求助10
10秒前
10秒前
10秒前
小二郎应助无奈的书双采纳,获得10
12秒前
金熙美发布了新的文献求助10
13秒前
13秒前
吕亚发布了新的文献求助10
13秒前
14秒前
15秒前
大模型应助马前人采纳,获得30
15秒前
韩涵发布了新的文献求助10
16秒前
忧伤的冰薇完成签到 ,获得积分10
16秒前
咕咕咕发布了新的文献求助10
16秒前
16秒前
sbw发布了新的文献求助10
17秒前
风清扬发布了新的文献求助200
17秒前
YANG发布了新的文献求助10
19秒前
plasma发布了新的文献求助10
19秒前
20秒前
JamesPei应助FunHigh采纳,获得10
22秒前
22秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3975816
求助须知:如何正确求助?哪些是违规求助? 3520159
关于积分的说明 11201128
捐赠科研通 3256541
什么是DOI,文献DOI怎么找? 1798347
邀请新用户注册赠送积分活动 877539
科研通“疑难数据库(出版商)”最低求助积分说明 806426