医学
纤维化
病理
管周毛细血管
内分泌学
肾
糖尿病肾病
免疫印迹
内科学
化学
生物化学
基因
作者
Yanping Wang,Bangjie Zuo,Nannan Wang,Shulin Li,Caixia Liu,Dong Sun
标识
DOI:10.1016/j.biopha.2020.110798
摘要
Calcium dobesilate (Cad), a protective agent, protects against microvascular damage, and diseases such as diabetic retinopathy and diabetic nephropathy. However, these vascular protective effects have not been demonstrated in chronic kidney disease (CKD). In this study, we aimed to determine the ability of Cad to protect against renal interstitial fibrosis induced by unilateral ureteral obstruction (UUO) and identify the underlying therapeutic mechanisms of Cad during hypoxia/serum deprivation (H/SD) in human umbilical vein endothelial cells (HUVECs). A total of 36 male mice were randomly assigned into 3 groups (12 mice in each group): the Sham-operated group (Sham), the saline solution-treated UUO mice group (UUO), and the Cad administration (intragastrically) group (Cad). The mice in Cad group were administered Cad (100 mg/kg) daily by oral gavage and slaughtered on the 7th and 14th days post-surgery. Six mice from each group were sacrificed by sodium pentobarbital injection on the 7th and 14th day after surgery. Tissue hypoxia, cell apoptosis and fibrotic lesions were detected by Immunostaining and Western blot. Peritubular capillaries (PTCs) injury was measured by a novel technique of fluorescent microangiography (FMA). Endothelial cell-to-mesenchymal transition (EndMT) were identified by immunofluorescence and Western blot. HUVECs proliferation was measured via Cell Counting Kit‑8 assays and Edu staining. Sirt1 and its downstream gene in Cad regulation of endothelial were detected. Hematoxylin-eosin (HE), Masson-trichrome stains and Histological findings showed that Cad administration markedly reduced hypoxia and renal interstitial fibrosis at each time point in UUO. Meanwhile, Cad protect against EndMT process of PTCs by increasing CD31 expression and decreasing α-smooth muscle actin and fibronectin expression. in vitro studies showed that there was a proliferative response of the HUVECs incubated with Cad (10 μM) in H/SD. Sirt1 was suppressed after small interfering RNA (siRNA) was transfected in HUVECs. Mechanistically, Cad enhanced Sirt1 signaling, which was accompanied by increased levels of p53 acetylation (ac-p53). Meanwhile, protein expression of Bcl-2, and VE-cadherin were downregulated, Bax, and α-SMA were upregulated. In summary, the therapeutic effect of Cad in obstructive nephropathy were likely through suppressing EndMT progression and promoting anti-apoptotic effects after via activating the Sirt1/p53 signaling pathway.
科研通智能强力驱动
Strongly Powered by AbleSci AI