Hyperfluorescence-Based Emission in Purely Organic Materials: Suppression of Energy-Loss Mechanisms via Alignment of Triplet Excited States

激发态 有机发光二极管 激子 荧光 单重态裂变 光电子学 三重态 材料科学 原子物理学 带隙 化学 单重态 纳米技术 物理 光学 凝聚态物理 图层(电子)
作者
Hadi Abroshan,Veaceslav Coropceanu,Jean‐Luc Brédas
出处
期刊:ACS materials letters [American Chemical Society]
卷期号:2 (11): 1412-1418 被引量:34
标识
DOI:10.1021/acsmaterialslett.0c00407
摘要

Hyperfluorescence has received significant attention as a promising strategy to design organic light-emitting diodes (OLEDs) with high color purity and enhanced stability. In this approach, emitters displaying strong and narrow-band fluorescence are integrated in thin films that contain sensitizers showing efficient thermally activated delayed fluorescence (TADF). To ensure high performance, the energies of the electronic states in the fluorescent emitters must be well-aligned, with respect to those in the TADF molecules, in order to enable a fast rate of Förster singlet-exciton energy transfer from the latter to the former. Here, we performed molecular dynamics simulations and density functional theory calculations to study a series of fluorescent emitters commonly considered in hyperfluorescence OLEDs. For all these emitters, the lowest triplet excited state (T1FE) is found to locate substantially below the lowest singlet excited state (S1FE). However, the second and/or third triplet excited states (T2FE and T3FE) appear at an energy close to that of S1FE; thus, while energy loss via triplet-exciton Dexter energy transfer from T1 in TADF molecules to T1FE is negligible, it can become significant due to Dexter transfer to T2FE and/or T3FE. As a result, we propose that fluorescent emitters be designed with a large energy gap between T2FE/T3FE and S1FE, as a promising strategy to suppress any Dexter energy-loss mechanism and develop highly efficient hyperfluorescence-based optoelectronic devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助热情笑旋采纳,获得10
3秒前
十一完成签到,获得积分10
4秒前
郭郭发布了新的文献求助10
4秒前
光亮语梦完成签到 ,获得积分10
4秒前
mm完成签到,获得积分10
4秒前
夏威夷发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
Ricardo发布了新的文献求助10
5秒前
6秒前
6秒前
情怀应助雨过山青采纳,获得10
7秒前
Lucas应助超级小刺猬采纳,获得10
9秒前
wangbw发布了新的文献求助30
9秒前
英姑应助科研通管家采纳,获得10
9秒前
HEIKU应助科研通管家采纳,获得10
9秒前
深情安青应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
天天快乐应助科研通管家采纳,获得10
9秒前
小马甲应助科研通管家采纳,获得30
9秒前
在水一方应助科研通管家采纳,获得10
10秒前
田様应助科研通管家采纳,获得10
10秒前
HEIKU应助科研通管家采纳,获得10
10秒前
李健应助科研通管家采纳,获得10
10秒前
安之于数发布了新的文献求助30
10秒前
jia应助科研通管家采纳,获得10
10秒前
打打应助科研通管家采纳,获得30
10秒前
汉堡包应助科研通管家采纳,获得20
10秒前
领导范儿应助科研通管家采纳,获得10
10秒前
月亮发布了新的文献求助10
13秒前
nene发布了新的文献求助10
13秒前
13秒前
wangbw完成签到,获得积分10
15秒前
郭郭完成签到,获得积分10
16秒前
自由的绝义完成签到,获得积分10
18秒前
19秒前
nene完成签到,获得积分20
20秒前
深情安青应助其华采纳,获得10
20秒前
mofan发布了新的文献求助10
21秒前
高分求助中
Earth System Geophysics 1000
Semiconductor Process Reliability in Practice 650
Studies on the inheritance of some characters in rice Oryza sativa L 600
Medicina di laboratorio. Logica e patologia clinica 600
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
Language injustice and social equity in EMI policies in China 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3207447
求助须知:如何正确求助?哪些是违规求助? 2856771
关于积分的说明 8107203
捐赠科研通 2522094
什么是DOI,文献DOI怎么找? 1355367
科研通“疑难数据库(出版商)”最低求助积分说明 642208
邀请新用户注册赠送积分活动 613489