亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multi-Hypergraph Learning-Based Brain Functional Connectivity Analysis in fMRI Data

超图 模式识别(心理学) 人工智能 计算机科学 功能磁共振成像 图形 相似性(几何) 加权 判别式 数学 理论计算机科学 图像(数学) 生物 离散数学 放射科 医学 神经科学
作者
Li Xiao,Junqi Wang,Peyman Hosseinzadeh Kassani,Yipu Zhang,Yuntong Bai,Julia M. Stephen,Tony W. Wilson,Vince D. Calhoun,Yu‐Ping Wang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:39 (5): 1746-1758 被引量:55
标识
DOI:10.1109/tmi.2019.2957097
摘要

Recently, a hypergraph constructed from functional magnetic resonance imaging (fMRI) was utilized to explore brain functional connectivity networks (FCNs) for the classification of neurodegenerative diseases. Each edge of a hypergraph (called hyperedge) can connect any number of brain regions-of-interest (ROIs) instead of only two ROIs, and thus characterizes high-order relations among multiple ROIs that cannot be uncovered by a simple graph in the traditional graph based FCN construction methods. Unlike the existing hypergraph based methods where all hyperedges are assumed to have equal weights and only certain topological features are extracted from the hypergraphs, we propose a hypergraph learning based method for FCN construction in this paper. Specifically, we first generate hyperedges from fMRI time series based on sparse representation, then employ hypergraph learning to adaptively learn hyperedge weights, and finally define a hypergraph similarity matrix to represent the FCN. In our proposed method, weighting hyperedges results in better discriminative FCNs across subjects, and the defined hypergraph similarity matrix can better reveal the overall structure of brain network than using those hypergraph topological features. Moreover, we propose a multi-hypergraph learning based method by integrating multi-paradigm fMRI data, where the hyperedge weights associated with each fMRI paradigm are jointly learned and then a unified hypergraph similarity matrix is computed to represent the FCN. We validate the effectiveness of the proposed method on the Philadelphia Neurodevelopmental Cohort dataset for the classification of individuals' learning ability from three paradigms of fMRI data. Experimental results demonstrate that our proposed approach outperforms the traditional graph based methods (i.e., Pearson's correlation and partial correlation with the graphical Lasso) and the existing unweighted hypergraph based methods, which sheds light on how to optimize estimation of FCNs for cognitive and behavioral study.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐乐应助蒲烯琳月采纳,获得10
3秒前
1分钟前
nuliguan完成签到 ,获得积分10
1分钟前
1分钟前
叔铭发布了新的文献求助10
1分钟前
叔铭完成签到,获得积分10
1分钟前
2分钟前
2分钟前
2分钟前
Painkiller_完成签到,获得积分10
3分钟前
无心的怜烟完成签到,获得积分10
3分钟前
乐乐应助陨落的繁星采纳,获得10
4分钟前
彭于晏应助包容的千兰采纳,获得10
4分钟前
5分钟前
5分钟前
5分钟前
付怀松完成签到 ,获得积分10
6分钟前
包容的千兰完成签到,获得积分10
6分钟前
腰突患者的科研完成签到 ,获得积分10
6分钟前
7分钟前
7分钟前
7分钟前
闪闪笑晴发布了新的文献求助30
7分钟前
xiongyi发布了新的文献求助10
7分钟前
东皇太憨完成签到,获得积分10
7分钟前
陨落的繁星完成签到,获得积分10
7分钟前
xiongyi完成签到,获得积分10
7分钟前
顾矜应助科研通管家采纳,获得20
7分钟前
FMHChan完成签到,获得积分10
8分钟前
早月十五完成签到 ,获得积分10
8分钟前
科研通AI2S应助zxt采纳,获得30
8分钟前
稻子完成签到 ,获得积分10
8分钟前
慕青应助我是猪采纳,获得10
9分钟前
9分钟前
我是猪发布了新的文献求助10
9分钟前
liwang9301完成签到,获得积分10
9分钟前
闪闪笑晴完成签到,获得积分10
10分钟前
爱听歌小兔子完成签到,获得积分10
11分钟前
大个应助大方听云采纳,获得10
12分钟前
12分钟前
高分求助中
歯科矯正学 第7版(或第5版) 1004
The late Devonian Standard Conodont Zonation 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Zeitschrift für Orient-Archäologie 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3238987
求助须知:如何正确求助?哪些是违规求助? 2884295
关于积分的说明 8232889
捐赠科研通 2552320
什么是DOI,文献DOI怎么找? 1380656
科研通“疑难数据库(出版商)”最低求助积分说明 649068
邀请新用户注册赠送积分活动 624769