Imaging of Nonlinear and Dynamic Functional Brain Connectivity Based on EEG Recordings With the Application on the Diagnosis of Alzheimer’s Disease

脑电图 非线性系统 计算机科学 静息状态功能磁共振成像 参数统计 人工智能 线性模型 脉冲响应 模式识别(心理学) 神经科学 机器学习 心理学 数学 统计 物理 数学分析 量子力学
作者
Yifan Zhao,Yitian Zhao,Pholpat Durongbhan,Liangyu Chen,Jiang Liu,S.A. Billings,Panagiotis Zis,Zoe C. Unwin,Matteo De Marco,Annalena Venneri,D. Blackburn,Ptolemaios G. Sarrigiannis
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:39 (5): 1571-1581 被引量:33
标识
DOI:10.1109/tmi.2019.2953584
摘要

Since age is the most significant risk factor for the development of Alzheimer's disease (AD), it is important to understand the effect of normal ageing on brain network characteristics before we can accurately diagnose the condition based on information derived from resting state electroencephalogram (EEG) recordings, aiming to detect brain network disruption. This article proposes a novel brain functional connectivity imaging method, particularly targeting the contribution of nonlinear dynamics of functional connectivity, on distinguishing participants with AD from healthy controls (HC). We describe a parametric method established upon a Nonlinear Finite Impulse Response model, and a revised orthogonal least squares algorithm used to estimate the linear, nonlinear and combined connectivity between any two EEG channels without fitting a full model. This approach, where linear and non-linear interactions and their spatial distribution and dynamics can be estimated independently, offered us the means to dissect the dynamic brain network disruption in AD from a new perspective and to gain some insight into the dynamic behaviour of brain networks in two age groups (above and below 70) with normal cognitive function. Although linear and stationary connectivity dominates the classification contributions, quantitative results have demonstrated that nonlinear and dynamic connectivity can significantly improve the classification accuracy, barring the group of participants below the age of 70, for resting state EEG recorded during eyes open. The developed approach is generic and can be used as a powerful tool to examine brain network characteristics and disruption in a user friendly and systematic way.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
daihahaha完成签到,获得积分10
1秒前
hkh发布了新的文献求助10
1秒前
AAA111122发布了新的文献求助10
2秒前
3秒前
fls221完成签到,获得积分10
5秒前
小米粒发布了新的文献求助10
5秒前
sunn发布了新的文献求助10
6秒前
情怀应助tuntunliu采纳,获得10
7秒前
9秒前
Buster发布了新的文献求助10
9秒前
10秒前
568675467发布了新的文献求助10
14秒前
17秒前
18秒前
kkalexander完成签到,获得积分10
20秒前
Hello应助香蕉秋柳采纳,获得30
20秒前
22秒前
Jim_Studio发布了新的文献求助10
22秒前
23秒前
zzz发布了新的文献求助20
23秒前
Buster完成签到,获得积分10
24秒前
科研通AI2S应助sunn采纳,获得10
24秒前
科研小白发布了新的文献求助10
24秒前
Hello应助kuro采纳,获得10
24秒前
爆米花应助YE采纳,获得10
26秒前
hammer完成签到,获得积分10
27秒前
27秒前
27秒前
正经大善人完成签到,获得积分10
29秒前
ml完成签到,获得积分20
29秒前
29秒前
简单的钢铁侠完成签到,获得积分10
29秒前
LAM发布了新的文献求助30
30秒前
Hello应助jason采纳,获得10
30秒前
ml发布了新的文献求助10
32秒前
hkh发布了新的文献求助10
33秒前
卜娜娜完成签到,获得积分10
33秒前
awwwer完成签到,获得积分10
34秒前
善学以致用应助水獭采纳,获得10
35秒前
35秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
The late Devonian Standard Conodont Zonation 1000
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 600
Zeitschrift für Orient-Archäologie 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3236124
求助须知:如何正确求助?哪些是违规求助? 2881835
关于积分的说明 8223952
捐赠科研通 2549841
什么是DOI,文献DOI怎么找? 1378680
科研通“疑难数据库(出版商)”最低求助积分说明 648421
邀请新用户注册赠送积分活动 623871