已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Imaging of Nonlinear and Dynamic Functional Brain Connectivity Based on EEG Recordings With the Application on the Diagnosis of Alzheimer’s Disease

脑电图 非线性系统 计算机科学 静息状态功能磁共振成像 参数统计 人工智能 线性模型 脉冲响应 模式识别(心理学) 神经科学 机器学习 心理学 数学 统计 物理 数学分析 量子力学
作者
Yifan Zhao,Yitian Zhao,Pholpat Durongbhan,Liangyu Chen,Jiang Liu,S.A. Billings,Panagiotis Zis,Zoe Unwin,Matteo De Marco,Annalena Venneri,D. Blackburn,Ptolemaios G. Sarrigiannis
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:39 (5): 1571-1581 被引量:39
标识
DOI:10.1109/tmi.2019.2953584
摘要

Since age is the most significant risk factor for the development of Alzheimer's disease (AD), it is important to understand the effect of normal ageing on brain network characteristics before we can accurately diagnose the condition based on information derived from resting state electroencephalogram (EEG) recordings, aiming to detect brain network disruption. This article proposes a novel brain functional connectivity imaging method, particularly targeting the contribution of nonlinear dynamics of functional connectivity, on distinguishing participants with AD from healthy controls (HC). We describe a parametric method established upon a Nonlinear Finite Impulse Response model, and a revised orthogonal least squares algorithm used to estimate the linear, nonlinear and combined connectivity between any two EEG channels without fitting a full model. This approach, where linear and non-linear interactions and their spatial distribution and dynamics can be estimated independently, offered us the means to dissect the dynamic brain network disruption in AD from a new perspective and to gain some insight into the dynamic behaviour of brain networks in two age groups (above and below 70) with normal cognitive function. Although linear and stationary connectivity dominates the classification contributions, quantitative results have demonstrated that nonlinear and dynamic connectivity can significantly improve the classification accuracy, barring the group of participants below the age of 70, for resting state EEG recorded during eyes open. The developed approach is generic and can be used as a powerful tool to examine brain network characteristics and disruption in a user friendly and systematic way.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Wish完成签到,获得积分10
2秒前
李爱国应助白契采纳,获得10
2秒前
3秒前
最烦起名称完成签到,获得积分20
3秒前
3秒前
RR完成签到,获得积分10
4秒前
6秒前
WWW完成签到,获得积分10
7秒前
英俊的铭应助RR采纳,获得10
7秒前
8秒前
方便面条子完成签到 ,获得积分10
9秒前
10秒前
找文献完成签到 ,获得积分10
11秒前
cc应助toto采纳,获得10
13秒前
13秒前
昏睡的傲珊完成签到 ,获得积分10
14秒前
LIU关闭了LIU文献求助
16秒前
小黑超努力完成签到 ,获得积分10
18秒前
侯笑笑发布了新的文献求助10
19秒前
几一昂完成签到,获得积分10
20秒前
李健应助科研通管家采纳,获得10
22秒前
天天快乐应助科研通管家采纳,获得10
22秒前
小二郎应助科研通管家采纳,获得10
22秒前
zhen完成签到,获得积分10
24秒前
GingerF举报小豆豆求助涉嫌违规
24秒前
简单的沛蓝完成签到 ,获得积分10
25秒前
上官若男应助xiaomaxia采纳,获得10
26秒前
所所应助益生菌小哥采纳,获得10
28秒前
诚心山芙发布了新的文献求助10
29秒前
29秒前
所所应助小巧的灵竹采纳,获得10
31秒前
李子敬完成签到,获得积分10
34秒前
35秒前
37秒前
turbohero完成签到,获得积分10
37秒前
黒马仔完成签到,获得积分10
38秒前
等待的乌龟完成签到,获得积分20
38秒前
可爱的函函应助tianxiemouzi采纳,获得10
39秒前
41秒前
loser完成签到 ,获得积分10
43秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5253138
求助须知:如何正确求助?哪些是违规求助? 4416657
关于积分的说明 13750270
捐赠科研通 4288890
什么是DOI,文献DOI怎么找? 2353183
邀请新用户注册赠送积分活动 1349892
关于科研通互助平台的介绍 1309642