已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Imaging of Nonlinear and Dynamic Functional Brain Connectivity Based on EEG Recordings With the Application on the Diagnosis of Alzheimer’s Disease

脑电图 非线性系统 计算机科学 静息状态功能磁共振成像 参数统计 人工智能 线性模型 脉冲响应 模式识别(心理学) 神经科学 机器学习 心理学 数学 统计 物理 数学分析 量子力学
作者
Yifan Zhao,Yitian Zhao,Pholpat Durongbhan,Liangyu Chen,Jiang Liu,S.A. Billings,Panagiotis Zis,Zoe Unwin,Matteo De Marco,Annalena Venneri,D. Blackburn,Ptolemaios G. Sarrigiannis
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:39 (5): 1571-1581 被引量:39
标识
DOI:10.1109/tmi.2019.2953584
摘要

Since age is the most significant risk factor for the development of Alzheimer's disease (AD), it is important to understand the effect of normal ageing on brain network characteristics before we can accurately diagnose the condition based on information derived from resting state electroencephalogram (EEG) recordings, aiming to detect brain network disruption. This article proposes a novel brain functional connectivity imaging method, particularly targeting the contribution of nonlinear dynamics of functional connectivity, on distinguishing participants with AD from healthy controls (HC). We describe a parametric method established upon a Nonlinear Finite Impulse Response model, and a revised orthogonal least squares algorithm used to estimate the linear, nonlinear and combined connectivity between any two EEG channels without fitting a full model. This approach, where linear and non-linear interactions and their spatial distribution and dynamics can be estimated independently, offered us the means to dissect the dynamic brain network disruption in AD from a new perspective and to gain some insight into the dynamic behaviour of brain networks in two age groups (above and below 70) with normal cognitive function. Although linear and stationary connectivity dominates the classification contributions, quantitative results have demonstrated that nonlinear and dynamic connectivity can significantly improve the classification accuracy, barring the group of participants below the age of 70, for resting state EEG recorded during eyes open. The developed approach is generic and can be used as a powerful tool to examine brain network characteristics and disruption in a user friendly and systematic way.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Zyc完成签到 ,获得积分10
1秒前
lijinyu完成签到,获得积分10
1秒前
FashionBoy应助油柑美式采纳,获得10
2秒前
6秒前
光亮外套完成签到,获得积分10
7秒前
9秒前
10秒前
11秒前
12秒前
牛芳草发布了新的文献求助10
14秒前
16秒前
hai发布了新的文献求助10
16秒前
光亮的鹏煊完成签到 ,获得积分10
17秒前
qz发布了新的文献求助10
18秒前
Zz发布了新的文献求助10
20秒前
火火完成签到 ,获得积分10
20秒前
牛芳草完成签到,获得积分10
26秒前
英俊的铭应助cream1105采纳,获得10
30秒前
Lucas应助hai采纳,获得10
31秒前
44秒前
star完成签到 ,获得积分10
47秒前
50秒前
小白天钓鱼完成签到 ,获得积分10
51秒前
zz完成签到 ,获得积分10
52秒前
52秒前
顾矜应助Jodie采纳,获得10
54秒前
Zz完成签到,获得积分10
1分钟前
今后应助油柑美式采纳,获得10
1分钟前
1分钟前
Jodie发布了新的文献求助10
1分钟前
1分钟前
西西完成签到 ,获得积分10
1分钟前
风中的天蓝完成签到 ,获得积分10
1分钟前
hai发布了新的文献求助10
1分钟前
烂漫的断秋完成签到 ,获得积分10
1分钟前
科研通AI2S应助chengzhiheng采纳,获得10
1分钟前
科研通AI6应助dwls采纳,获得10
1分钟前
科研通AI6应助anwen采纳,获得10
1分钟前
hada完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5558165
求助须知:如何正确求助?哪些是违规求助? 4643172
关于积分的说明 14670597
捐赠科研通 4584584
什么是DOI,文献DOI怎么找? 2514964
邀请新用户注册赠送积分活动 1489078
关于科研通互助平台的介绍 1459733