已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Imaging of Nonlinear and Dynamic Functional Brain Connectivity Based on EEG Recordings With the Application on the Diagnosis of Alzheimer’s Disease

脑电图 非线性系统 计算机科学 静息状态功能磁共振成像 参数统计 人工智能 线性模型 脉冲响应 模式识别(心理学) 神经科学 机器学习 心理学 数学 统计 物理 数学分析 量子力学
作者
Yifan Zhao,Yitian Zhao,Pholpat Durongbhan,Liangyu Chen,Jiang Liu,S.A. Billings,Panagiotis Zis,Zoe Unwin,Matteo De Marco,Annalena Venneri,D. Blackburn,Ptolemaios G. Sarrigiannis
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:39 (5): 1571-1581 被引量:39
标识
DOI:10.1109/tmi.2019.2953584
摘要

Since age is the most significant risk factor for the development of Alzheimer's disease (AD), it is important to understand the effect of normal ageing on brain network characteristics before we can accurately diagnose the condition based on information derived from resting state electroencephalogram (EEG) recordings, aiming to detect brain network disruption. This article proposes a novel brain functional connectivity imaging method, particularly targeting the contribution of nonlinear dynamics of functional connectivity, on distinguishing participants with AD from healthy controls (HC). We describe a parametric method established upon a Nonlinear Finite Impulse Response model, and a revised orthogonal least squares algorithm used to estimate the linear, nonlinear and combined connectivity between any two EEG channels without fitting a full model. This approach, where linear and non-linear interactions and their spatial distribution and dynamics can be estimated independently, offered us the means to dissect the dynamic brain network disruption in AD from a new perspective and to gain some insight into the dynamic behaviour of brain networks in two age groups (above and below 70) with normal cognitive function. Although linear and stationary connectivity dominates the classification contributions, quantitative results have demonstrated that nonlinear and dynamic connectivity can significantly improve the classification accuracy, barring the group of participants below the age of 70, for resting state EEG recorded during eyes open. The developed approach is generic and can be used as a powerful tool to examine brain network characteristics and disruption in a user friendly and systematic way.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
内向如松完成签到,获得积分10
4秒前
4秒前
wyz完成签到,获得积分10
4秒前
谢谢应助荔枝采纳,获得50
4秒前
小马甲应助wang1采纳,获得10
5秒前
顾矜应助呆梨医生采纳,获得10
5秒前
徐per爱豆完成签到 ,获得积分10
5秒前
薄荷源星球完成签到 ,获得积分10
7秒前
内向如松发布了新的文献求助30
7秒前
8秒前
自由飞翔完成签到,获得积分10
9秒前
9秒前
10秒前
10秒前
10秒前
JamesPei应助科研通管家采纳,获得10
11秒前
所所应助科研通管家采纳,获得10
11秒前
Hello应助科研通管家采纳,获得10
11秒前
852应助科研通管家采纳,获得10
11秒前
浮游应助科研通管家采纳,获得10
11秒前
Ava应助科研通管家采纳,获得10
11秒前
桐桐应助科研通管家采纳,获得10
11秒前
bkagyin应助科研通管家采纳,获得10
11秒前
忧心的惜天完成签到 ,获得积分10
12秒前
同尘完成签到,获得积分10
13秒前
木之子兮发布了新的文献求助10
14秒前
shuishui发布了新的文献求助10
14秒前
14秒前
谷雨秋发布了新的文献求助10
16秒前
haha发布了新的文献求助50
17秒前
同尘发布了新的文献求助10
17秒前
17秒前
18秒前
3D完成签到 ,获得积分10
19秒前
雾色笼晓树苍完成签到 ,获得积分10
20秒前
22秒前
LULU发布了新的文献求助10
25秒前
森森完成签到,获得积分10
25秒前
Agfish完成签到,获得积分20
25秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Half Century of the Sonogashira Reaction 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Extreme ultraviolet pellicle cooling by hydrogen gas flow (Conference Presentation) 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5172617
求助须知:如何正确求助?哪些是违规求助? 4362794
关于积分的说明 13584571
捐赠科研通 4210909
什么是DOI,文献DOI怎么找? 2309516
邀请新用户注册赠送积分活动 1308643
关于科研通互助平台的介绍 1255838