Imaging of Nonlinear and Dynamic Functional Brain Connectivity Based on EEG Recordings With the Application on the Diagnosis of Alzheimer’s Disease

脑电图 非线性系统 计算机科学 静息状态功能磁共振成像 参数统计 人工智能 线性模型 脉冲响应 模式识别(心理学) 神经科学 机器学习 心理学 数学 统计 物理 数学分析 量子力学
作者
Yifan Zhao,Yitian Zhao,Pholpat Durongbhan,Liangyu Chen,Jiang Liu,S.A. Billings,Panagiotis Zis,Zoe C. Unwin,Matteo De Marco,Annalena Venneri,D. Blackburn,Ptolemaios G. Sarrigiannis
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:39 (5): 1571-1581 被引量:33
标识
DOI:10.1109/tmi.2019.2953584
摘要

Since age is the most significant risk factor for the development of Alzheimer's disease (AD), it is important to understand the effect of normal ageing on brain network characteristics before we can accurately diagnose the condition based on information derived from resting state electroencephalogram (EEG) recordings, aiming to detect brain network disruption. This article proposes a novel brain functional connectivity imaging method, particularly targeting the contribution of nonlinear dynamics of functional connectivity, on distinguishing participants with AD from healthy controls (HC). We describe a parametric method established upon a Nonlinear Finite Impulse Response model, and a revised orthogonal least squares algorithm used to estimate the linear, nonlinear and combined connectivity between any two EEG channels without fitting a full model. This approach, where linear and non-linear interactions and their spatial distribution and dynamics can be estimated independently, offered us the means to dissect the dynamic brain network disruption in AD from a new perspective and to gain some insight into the dynamic behaviour of brain networks in two age groups (above and below 70) with normal cognitive function. Although linear and stationary connectivity dominates the classification contributions, quantitative results have demonstrated that nonlinear and dynamic connectivity can significantly improve the classification accuracy, barring the group of participants below the age of 70, for resting state EEG recorded during eyes open. The developed approach is generic and can be used as a powerful tool to examine brain network characteristics and disruption in a user friendly and systematic way.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lilinxin发布了新的文献求助30
刚刚
科研通AI6应助Album采纳,获得10
1秒前
火龙果发布了新的文献求助20
2秒前
豪豪完成签到,获得积分10
2秒前
ding应助aco采纳,获得10
2秒前
欢呼山雁完成签到,获得积分10
3秒前
3秒前
3秒前
4秒前
5秒前
man完成签到,获得积分10
5秒前
5秒前
慕青应助丛士乔采纳,获得10
6秒前
Hello应助乔晶采纳,获得10
6秒前
吧唧一笑的go完成签到,获得积分10
7秒前
1Yer6完成签到 ,获得积分10
7秒前
一方通行完成签到,获得积分10
7秒前
邹同学发布了新的文献求助10
8秒前
phuocnlh完成签到,获得积分10
9秒前
Hello应助Hestia采纳,获得10
10秒前
cangmingzi完成签到,获得积分20
10秒前
gg发布了新的文献求助10
10秒前
Pikaluo完成签到 ,获得积分10
10秒前
10秒前
Samuel完成签到,获得积分10
11秒前
成就的白羊完成签到,获得积分10
12秒前
lilinxin完成签到,获得积分10
15秒前
hikari完成签到 ,获得积分10
15秒前
15秒前
16秒前
jinling完成签到,获得积分10
17秒前
Album完成签到,获得积分10
17秒前
18秒前
元谷雪发布了新的文献求助10
19秒前
传奇3应助zhangyue7777采纳,获得10
20秒前
21秒前
火龙果发布了新的文献求助10
21秒前
fei菲飞完成签到,获得积分10
23秒前
24秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4633382
求助须知:如何正确求助?哪些是违规求助? 4029342
关于积分的说明 12467045
捐赠科研通 3715550
什么是DOI,文献DOI怎么找? 2050235
邀请新用户注册赠送积分活动 1081814
科研通“疑难数据库(出版商)”最低求助积分说明 964080