亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Imaging of Nonlinear and Dynamic Functional Brain Connectivity Based on EEG Recordings With the Application on the Diagnosis of Alzheimer’s Disease

脑电图 非线性系统 计算机科学 静息状态功能磁共振成像 参数统计 人工智能 线性模型 脉冲响应 模式识别(心理学) 神经科学 机器学习 心理学 数学 统计 物理 数学分析 量子力学
作者
Yifan Zhao,Yitian Zhao,Pholpat Durongbhan,Liangyu Chen,Jiang Liu,S.A. Billings,Panagiotis Zis,Zoe Unwin,Matteo De Marco,Annalena Venneri,D. Blackburn,Ptolemaios G. Sarrigiannis
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:39 (5): 1571-1581 被引量:39
标识
DOI:10.1109/tmi.2019.2953584
摘要

Since age is the most significant risk factor for the development of Alzheimer's disease (AD), it is important to understand the effect of normal ageing on brain network characteristics before we can accurately diagnose the condition based on information derived from resting state electroencephalogram (EEG) recordings, aiming to detect brain network disruption. This article proposes a novel brain functional connectivity imaging method, particularly targeting the contribution of nonlinear dynamics of functional connectivity, on distinguishing participants with AD from healthy controls (HC). We describe a parametric method established upon a Nonlinear Finite Impulse Response model, and a revised orthogonal least squares algorithm used to estimate the linear, nonlinear and combined connectivity between any two EEG channels without fitting a full model. This approach, where linear and non-linear interactions and their spatial distribution and dynamics can be estimated independently, offered us the means to dissect the dynamic brain network disruption in AD from a new perspective and to gain some insight into the dynamic behaviour of brain networks in two age groups (above and below 70) with normal cognitive function. Although linear and stationary connectivity dominates the classification contributions, quantitative results have demonstrated that nonlinear and dynamic connectivity can significantly improve the classification accuracy, barring the group of participants below the age of 70, for resting state EEG recorded during eyes open. The developed approach is generic and can be used as a powerful tool to examine brain network characteristics and disruption in a user friendly and systematic way.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大个应助绿树成荫采纳,获得10
3秒前
坚定的小蘑菇完成签到 ,获得积分10
3秒前
9秒前
Timelapse发布了新的文献求助10
12秒前
32秒前
36秒前
44秒前
lllll完成签到,获得积分20
59秒前
59秒前
Timelapse发布了新的文献求助10
59秒前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
Timelapse发布了新的文献求助10
1分钟前
1分钟前
黑摄会阿Fay完成签到,获得积分10
1分钟前
BowieHuang应助Timelapse采纳,获得10
1分钟前
甜橙完成签到 ,获得积分10
1分钟前
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
NattyPoe应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得20
1分钟前
1分钟前
852应助一碗鱼采纳,获得10
2分钟前
wanci应助andrele采纳,获得10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
一碗鱼发布了新的文献求助10
2分钟前
2分钟前
theo完成签到 ,获得积分10
2分钟前
糕冷草莓完成签到,获得积分10
2分钟前
英姑应助一碗鱼采纳,获得10
2分钟前
2分钟前
3分钟前
3分钟前
一碗鱼发布了新的文献求助10
3分钟前
一碗鱼完成签到,获得积分10
3分钟前
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5772792
求助须知:如何正确求助?哪些是违规求助? 5602544
关于积分的说明 15430087
捐赠科研通 4905627
什么是DOI,文献DOI怎么找? 2639585
邀请新用户注册赠送积分活动 1587478
关于科研通互助平台的介绍 1542423