Imaging of Nonlinear and Dynamic Functional Brain Connectivity Based on EEG Recordings With the Application on the Diagnosis of Alzheimer’s Disease

脑电图 非线性系统 计算机科学 静息状态功能磁共振成像 参数统计 人工智能 线性模型 脉冲响应 模式识别(心理学) 神经科学 机器学习 心理学 数学 统计 物理 数学分析 量子力学
作者
Yifan Zhao,Yitian Zhao,Pholpat Durongbhan,Liangyu Chen,Jiang Liu,S.A. Billings,Panagiotis Zis,Zoe Unwin,Matteo De Marco,Annalena Venneri,D. Blackburn,Ptolemaios G. Sarrigiannis
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:39 (5): 1571-1581 被引量:39
标识
DOI:10.1109/tmi.2019.2953584
摘要

Since age is the most significant risk factor for the development of Alzheimer's disease (AD), it is important to understand the effect of normal ageing on brain network characteristics before we can accurately diagnose the condition based on information derived from resting state electroencephalogram (EEG) recordings, aiming to detect brain network disruption. This article proposes a novel brain functional connectivity imaging method, particularly targeting the contribution of nonlinear dynamics of functional connectivity, on distinguishing participants with AD from healthy controls (HC). We describe a parametric method established upon a Nonlinear Finite Impulse Response model, and a revised orthogonal least squares algorithm used to estimate the linear, nonlinear and combined connectivity between any two EEG channels without fitting a full model. This approach, where linear and non-linear interactions and their spatial distribution and dynamics can be estimated independently, offered us the means to dissect the dynamic brain network disruption in AD from a new perspective and to gain some insight into the dynamic behaviour of brain networks in two age groups (above and below 70) with normal cognitive function. Although linear and stationary connectivity dominates the classification contributions, quantitative results have demonstrated that nonlinear and dynamic connectivity can significantly improve the classification accuracy, barring the group of participants below the age of 70, for resting state EEG recorded during eyes open. The developed approach is generic and can be used as a powerful tool to examine brain network characteristics and disruption in a user friendly and systematic way.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
chencf完成签到 ,获得积分10
刚刚
脑洞疼应助东晓采纳,获得10
刚刚
程小柒发布了新的文献求助10
1秒前
1秒前
天天快乐应助大成子采纳,获得10
2秒前
2秒前
mic发布了新的文献求助10
2秒前
3秒前
3秒前
Selina完成签到 ,获得积分10
3秒前
zzn发布了新的文献求助10
4秒前
cuigongxiang发布了新的文献求助10
4秒前
4秒前
小程同学完成签到,获得积分10
5秒前
传奇3应助hhh采纳,获得10
5秒前
烟花应助追寻荔枝采纳,获得10
5秒前
黑yan发布了新的文献求助10
6秒前
精明玲发布了新的文献求助10
7秒前
Accepted完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
大模型应助大仙采纳,获得10
8秒前
8秒前
echo发布了新的文献求助10
8秒前
8秒前
9秒前
wybe完成签到,获得积分10
12秒前
李健的小迷弟应助jialin采纳,获得10
12秒前
BLJ完成签到,获得积分10
12秒前
fzzf发布了新的文献求助10
13秒前
liaodongjun发布了新的文献求助30
13秒前
14秒前
翻斗花园发布了新的文献求助10
14秒前
大仙完成签到,获得积分10
15秒前
冷傲书萱发布了新的文献求助10
15秒前
Auimes发布了新的文献求助10
16秒前
清脆的映天完成签到,获得积分20
16秒前
俏皮幻悲发布了新的文献求助10
16秒前
东哥发布了新的文献求助10
17秒前
棋士应助刘培恒采纳,获得10
17秒前
tyq完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Chemistry and Biochemistry: Research Progress Vol. 7 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5684108
求助须知:如何正确求助?哪些是违规求助? 5035205
关于积分的说明 15183583
捐赠科研通 4843435
什么是DOI,文献DOI怎么找? 2596688
邀请新用户注册赠送积分活动 1549396
关于科研通互助平台的介绍 1507893