氧烷
氢氧化物
吸附
无机化学
磷酸盐
化学
层状双氢氧化物
金属氢氧化物
氧气
物理化学
有机化学
光谱学
量子力学
物理
作者
Jie Yu,Chao Xiang,Gong Zhang,Hongjie Wang,Qinghua Ji,Jiuhui Qu
标识
DOI:10.1021/acs.est.9b01939
摘要
Lanthanum (La)-based materials have been recognized as promising adsorbents for aqueous phosphate removal. The incorporation of base metals into La (oxy)hydroxides represents an effective strategy to improve adsorption performance. Understanding how base metals affect phosphate adsorption is challenging but essential for the development of effective materials for phosphorus control. Herein, we demonstrated a high-performance LaFe (oxy)hydroxide and studied its mechanisms on phosphate adsorption. The P K edge X-ray absorption near edge structure (XANES) analysis showed that PO43- was preferentially bonded with La, and the lattice oxygen in LaFe (oxy)hydroxide was demonstrated to be the active site. The O K edge XANES suggested that Fe optimized the electron structure of La, and Fe/La metal orbital hybridization resulted in the shift of oxygen p character to unoccupied states, facilitating phosphate adsorption. Furthermore, surface analysis showed that the pore size and volume were increased due to the introduction of Fe, which enabled efficient utilization of the active sites and fast adsorption kinetics. The dual effects of Fe in LaFe (oxy)hydroxide greatly enhance the effectiveness of La and represent a new strategy for the development of future phosphorus-control materials.
科研通智能强力驱动
Strongly Powered by AbleSci AI