极化率
偶极子
溶剂化
电介质
力矩(物理)
化学
键偶极矩
电偶极矩
电场
介电常数
极化密度
分子物理学
分子
化学物理
计算化学
物理
量子力学
有机化学
磁场
磁化
摘要
The methods for the experimental determination of electric dipole moment of molecules in solution from measurements of dielectric permittivity and refractive index are traditionally based on the classical Onsager model. In this model the molecular solute is approximated as a simple polarizable point dipole inside a spherical or ellipsoidal cavity of a dielectric medium representing the solvent. However, the inadequacies of the model resulting from the assumption of a simple shape of the cavity, for the evaluation of the cavity field effect, and from the uncertainty of the polarizability of the molecular solute influences the results and hampers the comparison with the electric dipole moments computed from quantum chemical solvation models. In this article we propose a new method for the experimental determination of the electric dipole moment in solution in which information from the Polarizable Continuum Model calculations are used in place of the Onsager model. The new method overcomes the limitations of this latter model regarding both the cavity field effect and the polarizability of the molecular solutes, and thus allows a coherent comparison between experimental and computed dipole moments of solvated molecules. © 2019 Wiley Periodicals, Inc.
科研通智能强力驱动
Strongly Powered by AbleSci AI