Proteomics analysis discovers biomarkers in serum months to years before small cell lung cancer: The HUNT study.

医学 队列 蛋白质组学 肺癌 癌症 肿瘤科 单变量分析 内科学 多元分析 生物 遗传学 基因
作者
Olav Toai Duc Nguyen,Maria Markaki,Christina Chatzipantsiou,Animesh Sharma,Vincenzo Lagani,Ioannis Tsamardinos,Oluf Dimitri Røe
出处
期刊:Journal of Clinical Oncology [American Society of Clinical Oncology]
卷期号:37 (15_suppl): e20095-e20095
标识
DOI:10.1200/jco.2019.37.15_suppl.e20095
摘要

e20095 Background: The high incidence and high mortality rate of small-cell lung cancer (SCLC) calls for identification of methods for early diagnosis. Searching of cancer-related proteins and proteins signature in biofluids is an emerging approach in early diagnostic of malignancies. In the present study we have used proteomics-based profiling of serum collected 2 months to 5 years before SCLC diagnosis to search for early diagnostic biomarkers. Methods: All serum samples in this study were obtained from the Nord-Trøndelag Health Study (HUNT) Research Centre’s Biobank. Discovery sample set (Cohort I): Serum samples from 12 individuals that subsequently developed SCLC and 12 matched controls were obtained. Validation sample set (Cohort II): Serum samples from 5 future SCLC patients and 5 matched controls were obtained. The serum samples in both cohorts were collected in a time frame of 2 months to 5 years before diagnosis. All controls included in the study were matched to the cases for smoking status (pack years and quit time), gender and age, and were cancer-free at least 5 years before blood sampling. All subjects were smokers or ex-smokers. Twenty (20) µl of serum was depleted of its high-abundant proteins and the cleaned-up peptides were analysed by LC- MS with an Orbitrap Elite mass spectrometer. Data were processed/analysed using MaxQuant software. Using Cohort I as training set, proteins most related to diagnosis were identified at first with limma univariate analysis. Reference and equivalent signatures were identified using JADbio with SES as feature selection algorithm. The JADbio matched pipeline with 50 repetitions for performance assessment (AUC with 95% CI) was used. Results: In each serum sample the analysis detected 435 proteins in Cohort I and 609 proteins in Cohort II. Reference signature for 12 SCLC future cases vs 12 matched controls had a conservative AUC of 0.686 (95% CI: 0.557, 0.765) in the discovery cohort. Three proteins in the reference and equivalent signatures were also found to be differentially expressed in validation Cohort II; all three proteins discriminated small-cell lung cancer patients from their respective controls (AUC 0.757-0.826 in the discovery Cohort I and AUC 0.68-0.84 in the validation Cohort II). Conclusions: The results indicate that differential levels of a few proteins in serum may help detecting SCLC 2 months to 5 years prior to clinical diagnosis. This is one of the first large-scale proteomics screening studies of pre-diagnostic serum of future SCLC patients. Further validation studies are in progress.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
单薄白薇发布了新的文献求助10
刚刚
豆子完成签到,获得积分10
1秒前
通~发布了新的文献求助10
2秒前
橘子哥完成签到,获得积分10
2秒前
mnm发布了新的文献求助10
3秒前
柔弱凡松发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
4秒前
SHDeathlock发布了新的文献求助50
4秒前
乐乐应助hu970采纳,获得10
4秒前
单薄白薇完成签到,获得积分10
6秒前
陈杰发布了新的文献求助10
6秒前
6秒前
6秒前
小张张发布了新的文献求助10
6秒前
乐乐应助YAN采纳,获得10
7秒前
迷惘墨香完成签到 ,获得积分10
8秒前
8秒前
Cynthia发布了新的文献求助30
8秒前
共享精神应助shenyanlei采纳,获得10
9秒前
wwww发布了新的文献求助10
9秒前
蔡菜菜完成签到,获得积分10
10秒前
852应助小余采纳,获得10
10秒前
饱满秋完成签到,获得积分10
11秒前
夜白发布了新的文献求助20
11秒前
搜集达人应助明月清风采纳,获得10
11秒前
希夷发布了新的文献求助10
12秒前
12秒前
爆米花应助通~采纳,获得10
12秒前
苏靖完成签到,获得积分10
12秒前
luoyutian发布了新的文献求助10
12秒前
12秒前
12秒前
13秒前
科研通AI5应助猪猪采纳,获得10
13秒前
13秒前
海绵体宝宝应助an采纳,获得10
14秒前
wwww完成签到,获得积分10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762