Changes in Functional Connectivity Predict Outcome of Repetitive Transcranial Magnetic Stimulation Treatment of Major Depressive Disorder

磁刺激 重性抑郁障碍 心理学 刺激 功能连接 相关性 神经科学 听力学 物理医学与康复 医学 认知 几何学 数学
作者
Juliana Corlier,Andrew Wilson,Aimee M. Hunter,Nikita Vince-Cruz,David E. Krantz,Jennifer Levitt,Michael Minzenberg,Nathaniel D. Ginder,Ian A. Cook,Andrew F. Leuchter
出处
期刊:Cerebral Cortex [Oxford University Press]
卷期号:29 (12): 4958-4967 被引量:49
标识
DOI:10.1093/cercor/bhz035
摘要

Abstract Repetitive transcranial magnetic stimulation (rTMS) treatment of major depressive disorder (MDD) is associated with changes in brain functional connectivity (FC). These changes may be related to the mechanism of action of rTMS and explain the variability in clinical outcome. We examined changes in electroencephalographic FC during the first rTMS treatment in 109 subjects treated with 10 Hz stimulation to left dorsolateral prefrontal cortex. All subjects subsequently received 30 treatments and clinical response was defined as ≥40% improvement in the inventory of depressive symptomatology-30 SR score at treatment 30. Connectivity change was assessed with coherence, envelope correlation, and a novel measure, alpha spectral correlation (αSC). Machine learning was used to develop predictive models of outcome for each connectivity measure, which were compared with prediction based upon early clinical improvement. Significant connectivity changes were associated with clinical outcome (P < 0.001). Machine learning models based on αSC yielded the most accurate prediction (area under the curve, AUC = 0.83), and performance improved when combined with early clinical improvement measures (AUC = 0.91). The initial rTMS treatment session produced robust changes in FC, which were significant predictors of clinical outcome of a full course of treatment for MDD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
单薄白薇完成签到,获得积分10
1秒前
陈杰发布了新的文献求助10
1秒前
1秒前
1秒前
小张张发布了新的文献求助10
1秒前
乐乐应助YAN采纳,获得10
2秒前
迷惘墨香完成签到 ,获得积分10
3秒前
3秒前
Cynthia发布了新的文献求助30
3秒前
共享精神应助shenyanlei采纳,获得10
4秒前
wwww发布了新的文献求助10
4秒前
蔡菜菜完成签到,获得积分10
5秒前
852应助小余采纳,获得10
5秒前
饱满秋完成签到,获得积分10
6秒前
夜白发布了新的文献求助20
6秒前
搜集达人应助明月清风采纳,获得10
6秒前
希夷发布了新的文献求助10
7秒前
7秒前
爆米花应助通~采纳,获得10
7秒前
苏靖完成签到,获得积分10
7秒前
luoyutian发布了新的文献求助10
7秒前
7秒前
7秒前
8秒前
科研通AI5应助猪猪采纳,获得10
8秒前
8秒前
海绵体宝宝应助an采纳,获得10
9秒前
wwww完成签到,获得积分10
9秒前
9秒前
桐桐应助柔弱凡松采纳,获得10
9秒前
爆米花应助丶呆久自然萌采纳,获得10
10秒前
10秒前
wanyanjin应助流云采纳,获得10
10秒前
心花怒放发布了新的文献求助10
11秒前
DrYang发布了新的文献求助10
11秒前
11秒前
跑在颖完成签到,获得积分20
11秒前
希望天下0贩的0应助Jackson采纳,获得10
11秒前
徐徐发布了新的文献求助10
12秒前
落花生完成签到,获得积分10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762