亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Changes in Functional Connectivity Predict Outcome of Repetitive Transcranial Magnetic Stimulation Treatment of Major Depressive Disorder

磁刺激 重性抑郁障碍 心理学 刺激 功能连接 相关性 神经科学 听力学 物理医学与康复 医学 认知 几何学 数学
作者
Juliana Corlier,Andrew Wilson,Aimee M. Hunter,Nikita Vince-Cruz,David E. Krantz,Jennifer Levitt,Michael Minzenberg,Nathaniel D. Ginder,Ian A. Cook,Andrew F. Leuchter
出处
期刊:Cerebral Cortex [Oxford University Press]
卷期号:29 (12): 4958-4967 被引量:49
标识
DOI:10.1093/cercor/bhz035
摘要

Abstract Repetitive transcranial magnetic stimulation (rTMS) treatment of major depressive disorder (MDD) is associated with changes in brain functional connectivity (FC). These changes may be related to the mechanism of action of rTMS and explain the variability in clinical outcome. We examined changes in electroencephalographic FC during the first rTMS treatment in 109 subjects treated with 10 Hz stimulation to left dorsolateral prefrontal cortex. All subjects subsequently received 30 treatments and clinical response was defined as ≥40% improvement in the inventory of depressive symptomatology-30 SR score at treatment 30. Connectivity change was assessed with coherence, envelope correlation, and a novel measure, alpha spectral correlation (αSC). Machine learning was used to develop predictive models of outcome for each connectivity measure, which were compared with prediction based upon early clinical improvement. Significant connectivity changes were associated with clinical outcome (P < 0.001). Machine learning models based on αSC yielded the most accurate prediction (area under the curve, AUC = 0.83), and performance improved when combined with early clinical improvement measures (AUC = 0.91). The initial rTMS treatment session produced robust changes in FC, which were significant predictors of clinical outcome of a full course of treatment for MDD.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今后应助chenjy202303采纳,获得20
18秒前
24秒前
Criminology34发布了新的文献求助100
28秒前
所所应助lawang采纳,获得10
30秒前
华仔应助lawang采纳,获得10
30秒前
情怀应助lawang采纳,获得10
30秒前
无花果应助lawang采纳,获得10
30秒前
酷波er应助lawang采纳,获得10
30秒前
今后应助lawang采纳,获得10
30秒前
丘比特应助lawang采纳,获得10
30秒前
Jasper应助lawang采纳,获得10
30秒前
善学以致用应助lawang采纳,获得10
30秒前
英俊的铭应助lawang采纳,获得10
30秒前
37秒前
充电宝应助科研通管家采纳,获得10
37秒前
44秒前
46秒前
chenjy202303发布了新的文献求助20
51秒前
Endymion发布了新的文献求助10
51秒前
今后应助Endymion采纳,获得10
55秒前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
lawang发布了新的文献求助10
1分钟前
lawang发布了新的文献求助10
1分钟前
lawang发布了新的文献求助10
1分钟前
lawang发布了新的文献求助10
1分钟前
lawang发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5658113
求助须知:如何正确求助?哪些是违规求助? 4817258
关于积分的说明 15080877
捐赠科研通 4816425
什么是DOI,文献DOI怎么找? 2577351
邀请新用户注册赠送积分活动 1532344
关于科研通互助平台的介绍 1490957