Hybrid Preprocessing Method for Support Vector Machine for Classification of Imbalanced Cerebral Infarction Datasets

欠采样 过采样 支持向量机 计算机科学 人工智能 预处理器 模式识别(心理学) 机器学习 数据预处理 带宽(计算) 计算机网络
作者
Zuherman Rustam,Dea Aulia Utami,Rahmat Hidayat,Jacub Pandelaki,Widyo Ari Nugroho
出处
期刊:International Journal on Advanced Science, Engineering and Information Technology [Insight Society]
卷期号:9 (2): 685-691 被引量:23
标识
DOI:10.18517/ijaseit.9.2.8615
摘要

Cerebral infarction is one of the causes of ischemic stroke in the brain, and machine learning can be used in the detection of cerebral infarction in the brain. In diagnosing the presence of cerebral infarction in the brain, machine learning is used because it is not enough just to use a CT scan to diagnose. Support vector machine (SVM) is a machine learning method that is known for its high accuracy value. However, SVM can produce less optimal results if the data used is imbalanced. If imbalanced data is used, the resulting model will be biased. Therefore, this study uses a hybrid preprocessing method for SVM on the classification of an imbalanced cerebral infarction dataset obtained from the Department of Radiology at Dr. Cipto Mangunkusumo Hospital. This method is a combination of several sampling methods that deal with the problem of imbalanced data and utilizes undersampling and oversampling techniques in combination with SVM. Oversampling modifying the infarction dataset through the duplication of data with a small number of classes to be balanced with a large number of data classes. While undersampling reducing data with a large number of classes to be balanced with a smaller number of data classes. Undersampling and Oversampling are combined into a hybrid method. This method is a hybrid method of the undersampling and oversampling that can be used in SVM. The results of hybrid method using SVM will be compared with the undersampling and oversampling using SVM, individually. And SVM method without preprocessing the imbalanced dataset. The accuracy of the proposed method reached 94% in our evaluations for SVM using a hybrid preprocessing method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
于思枫完成签到,获得积分10
1秒前
传奇3应助Xwu采纳,获得10
3秒前
叹陌发布了新的文献求助10
4秒前
joejo1124发布了新的文献求助50
6秒前
6秒前
8秒前
qsmei2020完成签到,获得积分10
9秒前
田様应助evefei采纳,获得10
10秒前
优秀芷荷发布了新的文献求助30
11秒前
12秒前
彪壮的火车完成签到,获得积分10
14秒前
wanwan应助coldsky采纳,获得10
14秒前
yanjiusheng完成签到,获得积分10
15秒前
17秒前
欣欣子完成签到 ,获得积分10
17秒前
江幻天完成签到,获得积分10
18秒前
Rondab应助彪壮的火车采纳,获得10
18秒前
Ava应助41采纳,获得10
20秒前
十八完成签到,获得积分10
21秒前
21秒前
22秒前
大模型应助科研通管家采纳,获得10
23秒前
桐桐应助科研通管家采纳,获得10
23秒前
汉堡包应助科研通管家采纳,获得10
23秒前
SHAO应助科研通管家采纳,获得10
23秒前
汉堡包应助科研通管家采纳,获得10
23秒前
1213应助科研通管家采纳,获得20
23秒前
华仔应助科研通管家采纳,获得10
23秒前
李健应助科研通管家采纳,获得10
23秒前
隐形曼青应助科研通管家采纳,获得10
23秒前
23秒前
乐乐应助科研通管家采纳,获得10
23秒前
yyf关闭了yyf文献求助
23秒前
脑洞疼应助科研通管家采纳,获得10
23秒前
kecheng应助科研通管家采纳,获得20
23秒前
23秒前
今后应助科研通管家采纳,获得10
23秒前
FashionBoy应助自信的冬日采纳,获得10
23秒前
打打应助科研通管家采纳,获得10
23秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992040
求助须知:如何正确求助?哪些是违规求助? 3533077
关于积分的说明 11260941
捐赠科研通 3272444
什么是DOI,文献DOI怎么找? 1805837
邀请新用户注册赠送积分活动 882682
科研通“疑难数据库(出版商)”最低求助积分说明 809425