Differential convolutional neural network

卷积神经网络 卷积(计算机科学) 计算机科学 人工智能 模式识别(心理学) 算法 深度学习 集合(抽象数据类型) 特征(语言学) 反向传播 人工神经网络 语言学 哲学 程序设计语言
作者
Mehmet Sarıgül,Buse Melis Özyıldırım,Mutlu Avcı
出处
期刊:Neural Networks [Elsevier]
卷期号:116: 279-287 被引量:147
标识
DOI:10.1016/j.neunet.2019.04.025
摘要

Convolutional neural networks with strong representation ability of deep structures have ever increasing popularity in many research areas. The main difference of Convolutional Neural Networks with respect to existing similar artificial neural networks is the inclusion of the convolutional part. This inclusion directly increases the performance of artificial neural networks. This fact has led to the development of many different convolutional models and techniques. In this work, a novel convolution technique named as Differential Convolution and updated error back-propagation algorithm is proposed. The proposed technique aims to transfer feature maps containing directional activation differences to the next layer. This implementation takes the idea of how convolved features change on the feature map into consideration. In a sense, this process adapts the mathematical differentiation operation into the convolutional process. Proposed improved back propagation algorithm also considers neighborhood activation errors. This property increases the classification performance without changing the number of filters. Four different experiment sets were performed to observe the performance and the adaptability of the differential convolution technique. In the first experiment set utilization of the differential convolution on a traditional convolutional neural network structure made a performance boost up to 55.29% for the test accuracy. In the second experiment set differential convolution adaptation raised the top1 and top5 test accuracies of AlexNet by 5.3% and 4.75% on ImageNet dataset. In the third experiment set differential convolution utilized model outperformed all compared convolutional structures. In the fourth experiment set, the Differential VGGNet model obtained by adapting proposed differential convolution technique performed 93.58% and 75.06% accuracy values for CIFAR10 and CIFAR100 datasets, respectively. The accuracy values of the Differential NIN model containing differential convolution operation were 92.44% and 72.65% for the same datasets. In these experiment sets, it was observed that the differential convolution technique outperformed both traditional convolution and other compared convolution techniques. In addition, easy adaptation of the proposed technique to different convolutional structures and its efficiency demonstrate that popular deep learning models may be improved with differential convolution.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
和谐白云完成签到,获得积分10
2秒前
sxs发布了新的文献求助10
3秒前
蓝愿发布了新的文献求助10
4秒前
4秒前
丽英安发布了新的文献求助10
5秒前
LUO完成签到,获得积分10
5秒前
5秒前
6秒前
IRer79完成签到 ,获得积分10
6秒前
小鱼仔完成签到,获得积分10
8秒前
理工彭于晏完成签到,获得积分10
8秒前
9秒前
陈平安发布了新的文献求助10
10秒前
12秒前
王春发布了新的文献求助10
13秒前
xt发布了新的文献求助10
13秒前
科研通AI2S应助玩儿采纳,获得10
15秒前
红叶应助玩儿采纳,获得10
15秒前
科研通AI2S应助玩儿采纳,获得10
15秒前
18秒前
HaojunWang完成签到 ,获得积分10
18秒前
xjw发布了新的文献求助10
20秒前
劲秉应助蓝愿采纳,获得10
21秒前
21秒前
zplease发布了新的文献求助10
22秒前
23秒前
ZSM发布了新的文献求助10
27秒前
积极方盒完成签到,获得积分10
27秒前
27秒前
华仔应助科研通管家采纳,获得10
28秒前
完美世界应助科研通管家采纳,获得10
28秒前
潇潇雨歇应助科研通管家采纳,获得10
28秒前
英姑应助科研通管家采纳,获得10
28秒前
Tomato发布了新的文献求助10
28秒前
29秒前
Polymer72应助lwq采纳,获得10
31秒前
hhhhh发布了新的文献求助10
31秒前
32秒前
33秒前
safe阿尔法是完成签到,获得积分10
35秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
Zeitschrift für Orient-Archäologie 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3352591
求助须知:如何正确求助?哪些是违规求助? 2977668
关于积分的说明 8680688
捐赠科研通 2658572
什么是DOI,文献DOI怎么找? 1455884
科研通“疑难数据库(出版商)”最低求助积分说明 674150
邀请新用户注册赠送积分活动 664709