Differential convolutional neural network

卷积神经网络 卷积(计算机科学) 计算机科学 人工智能 模式识别(心理学) 算法 深度学习 集合(抽象数据类型) 特征(语言学) 反向传播 人工神经网络 语言学 哲学 程序设计语言
作者
Mehmet Sarıgül,Buse Melis Özyıldırım,Mutlu Avcı
出处
期刊:Neural Networks [Elsevier BV]
卷期号:116: 279-287 被引量:147
标识
DOI:10.1016/j.neunet.2019.04.025
摘要

Convolutional neural networks with strong representation ability of deep structures have ever increasing popularity in many research areas. The main difference of Convolutional Neural Networks with respect to existing similar artificial neural networks is the inclusion of the convolutional part. This inclusion directly increases the performance of artificial neural networks. This fact has led to the development of many different convolutional models and techniques. In this work, a novel convolution technique named as Differential Convolution and updated error back-propagation algorithm is proposed. The proposed technique aims to transfer feature maps containing directional activation differences to the next layer. This implementation takes the idea of how convolved features change on the feature map into consideration. In a sense, this process adapts the mathematical differentiation operation into the convolutional process. Proposed improved back propagation algorithm also considers neighborhood activation errors. This property increases the classification performance without changing the number of filters. Four different experiment sets were performed to observe the performance and the adaptability of the differential convolution technique. In the first experiment set utilization of the differential convolution on a traditional convolutional neural network structure made a performance boost up to 55.29% for the test accuracy. In the second experiment set differential convolution adaptation raised the top1 and top5 test accuracies of AlexNet by 5.3% and 4.75% on ImageNet dataset. In the third experiment set differential convolution utilized model outperformed all compared convolutional structures. In the fourth experiment set, the Differential VGGNet model obtained by adapting proposed differential convolution technique performed 93.58% and 75.06% accuracy values for CIFAR10 and CIFAR100 datasets, respectively. The accuracy values of the Differential NIN model containing differential convolution operation were 92.44% and 72.65% for the same datasets. In these experiment sets, it was observed that the differential convolution technique outperformed both traditional convolution and other compared convolution techniques. In addition, easy adaptation of the proposed technique to different convolutional structures and its efficiency demonstrate that popular deep learning models may be improved with differential convolution.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
aktuell完成签到,获得积分20
刚刚
叶y应助慧海拾穗采纳,获得10
1秒前
1秒前
慕青应助毕春宇采纳,获得10
3秒前
orixero应助Alessnndre采纳,获得10
5秒前
aktuell发布了新的文献求助10
5秒前
7秒前
愉快的海完成签到,获得积分20
8秒前
星黛Lu完成签到,获得积分10
8秒前
10秒前
12秒前
愉快的海发布了新的文献求助10
12秒前
紫陌完成签到,获得积分0
12秒前
13秒前
lzh353512377发布了新的文献求助10
14秒前
蜗牛完成签到,获得积分20
15秒前
15秒前
16秒前
认真的TOTORO完成签到,获得积分10
16秒前
16秒前
胖川完成签到,获得积分10
17秒前
哈哈哈完成签到,获得积分10
18秒前
大个应助疯子魔煞采纳,获得30
19秒前
19秒前
20秒前
SIDEsss完成签到,获得积分0
20秒前
林平之完成签到,获得积分10
20秒前
FashionBoy应助liyingbin采纳,获得10
22秒前
22秒前
23秒前
共享精神应助JEAN采纳,获得10
23秒前
朵拉A梦完成签到,获得积分10
24秒前
搜集达人应助三岁半采纳,获得10
24秒前
科研通AI2S应助高兴的半仙采纳,获得10
24秒前
奥利奥爱好者完成签到,获得积分10
25秒前
25秒前
锦鲤完成签到 ,获得积分10
27秒前
Alessnndre完成签到,获得积分20
27秒前
28秒前
娇气的雁兰完成签到,获得积分10
28秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958068
求助须知:如何正确求助?哪些是违规求助? 3504219
关于积分的说明 11117555
捐赠科研通 3235582
什么是DOI,文献DOI怎么找? 1788351
邀请新用户注册赠送积分活动 871204
科研通“疑难数据库(出版商)”最低求助积分说明 802511