卷积神经网络
卷积(计算机科学)
计算机科学
人工智能
模式识别(心理学)
算法
深度学习
集合(抽象数据类型)
特征(语言学)
反向传播
人工神经网络
语言学
哲学
程序设计语言
作者
Mehmet Sarıgül,Buse Melis Özyıldırım,Mutlu Avcı
标识
DOI:10.1016/j.neunet.2019.04.025
摘要
Convolutional neural networks with strong representation ability of deep structures have ever increasing popularity in many research areas. The main difference of Convolutional Neural Networks with respect to existing similar artificial neural networks is the inclusion of the convolutional part. This inclusion directly increases the performance of artificial neural networks. This fact has led to the development of many different convolutional models and techniques. In this work, a novel convolution technique named as Differential Convolution and updated error back-propagation algorithm is proposed. The proposed technique aims to transfer feature maps containing directional activation differences to the next layer. This implementation takes the idea of how convolved features change on the feature map into consideration. In a sense, this process adapts the mathematical differentiation operation into the convolutional process. Proposed improved back propagation algorithm also considers neighborhood activation errors. This property increases the classification performance without changing the number of filters. Four different experiment sets were performed to observe the performance and the adaptability of the differential convolution technique. In the first experiment set utilization of the differential convolution on a traditional convolutional neural network structure made a performance boost up to 55.29% for the test accuracy. In the second experiment set differential convolution adaptation raised the top1 and top5 test accuracies of AlexNet by 5.3% and 4.75% on ImageNet dataset. In the third experiment set differential convolution utilized model outperformed all compared convolutional structures. In the fourth experiment set, the Differential VGGNet model obtained by adapting proposed differential convolution technique performed 93.58% and 75.06% accuracy values for CIFAR10 and CIFAR100 datasets, respectively. The accuracy values of the Differential NIN model containing differential convolution operation were 92.44% and 72.65% for the same datasets. In these experiment sets, it was observed that the differential convolution technique outperformed both traditional convolution and other compared convolution techniques. In addition, easy adaptation of the proposed technique to different convolutional structures and its efficiency demonstrate that popular deep learning models may be improved with differential convolution.
科研通智能强力驱动
Strongly Powered by AbleSci AI