位阻效应
量子点
红外线的
带隙
光电子学
材料科学
纳米技术
配体(生物化学)
化学
光化学
立体化学
物理
光学
生物化学
受体
作者
Mengxia Liu,Fanglin Che,Bin Sun,Oleksandr Voznyy,Andrew H. Proppe,Rahim Munir,Mingyang Wei,Rafael Quintero‐Bermudez,Lilei Hu,Sjoerd Hoogland,Andreas Mandelis,Aram Amassian,Shana O. Kelley,F. Pelayo Garcı́a de Arquer,Edward H. Sargent
出处
期刊:ACS energy letters
[American Chemical Society]
日期:2019-04-30
卷期号:4 (6): 1225-1230
被引量:61
标识
DOI:10.1021/acsenergylett.9b00388
摘要
Colloidal quantum dots (CQDs), which benefit from a size-tuned bandgap, are a solution-processed material for infrared energy harvesting. This characteristic enables the fabrication of solar cells that form tandem devices with silicon. Unfortunately, in the case of CQDs having diameters sufficiently large (>4 nm) so that the nanoparticles absorb light well beyond silicon's bandgap, conventional ligand exchanges fail. Here we report a strategy wherein short-chain carboxylates, used as a steric hindrance controller, facilitate the ligand exchange process on small-bandgap CQDs. We demonstrate that the net energy barrier to replace original capping ligands with lead halide anions is decreased when short carboxylates are involved. The approach produces more complete ligand exchange that enables improved packing density and monodispersity. This contributes to a 2-fold reduction in the trap state density compared to the best previously reported exchange. We demonstrate solar cells that achieve a record infrared photon-to-electron conversion efficiency at the excitonic peak.
科研通智能强力驱动
Strongly Powered by AbleSci AI