Hierarchical Similarity Network Fusion for Discovering Cancer Subtypes

计算机科学 相似性(几何) 人工智能 轮廓 数据挖掘 维数之咒 传感器融合 光谱聚类 模式识别(心理学) 特征(语言学) 聚类分析 机器学习 图像(数学) 语言学 哲学
作者
Shuhui Liu,Xuequn Shang
出处
期刊:Lecture Notes in Computer Science 卷期号:: 125-136 被引量:4
标识
DOI:10.1007/978-3-319-94968-0_11
摘要

Recent breakthroughs in biologic sequencing technologies have cost-effectively yielded diverse types of observations. Integrative analysis of multiple platform cancer data, which is capable of revealing intrinsic characteristics of a biological process, has become an attractive research route on cancer subtypes discovery. Most machine learning based methods need represent each input data in unified space, losing certain important features or resulting in various noises in some data types. Furthermore, many network based data integration methods treat each type data independently, leading to a lot of inconsistent conclusions. Subsequently, similarity network fusion (SNF) was developed to deal with such questions. However, Euclidean distance metrics employed in SNF suffers curse of dimensionality and thus gives rise to poor results. To this end, we propose a new integrated method, dubbed hierarchical similarity network (HSNF), to learn a fused discriminating patient similarity network. HSNF randomly samples sub-features from different input data to construct multiple input similarity matrixes used as a basic of fusion so that diverse similarity matrixes are generated by multiple random sampling. Then we design a hierarchical fusion framework to make full use of the complementariness of diverse similarity networks from different feature modalities. Finally, based on the final fused similarity matrix, spectral clustering was used to discover cancer subtypes. Experimental results on five public cancer datasets manifest that HSNF can discover significantly different subtypes and can consistently outperform the-state-of-the-art in terms of silhouette, and p-value of survival analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Farrah关注了科研通微信公众号
7秒前
852应助Balance Man采纳,获得10
7秒前
8秒前
9秒前
9秒前
10秒前
丘比特应助万海采纳,获得10
11秒前
小二发布了新的文献求助20
11秒前
5Hepburn完成签到,获得积分20
11秒前
非也非也6完成签到,获得积分10
12秒前
13秒前
13秒前
自由从筠发布了新的文献求助10
14秒前
gc发布了新的文献求助10
14秒前
快乐仙知发布了新的文献求助10
14秒前
旺旺发布了新的文献求助10
14秒前
缥缈白亦完成签到,获得积分10
15秒前
张亚慧完成签到 ,获得积分10
15秒前
dora发布了新的文献求助10
15秒前
19秒前
20秒前
学不完了发布了新的文献求助20
20秒前
20秒前
大方颦完成签到 ,获得积分20
21秒前
21秒前
22秒前
丘比特应助熊大采纳,获得10
22秒前
Jingg完成签到,获得积分10
24秒前
24秒前
24秒前
24秒前
qqa发布了新的文献求助10
25秒前
HCLonely应助jzy采纳,获得10
27秒前
万海完成签到,获得积分10
27秒前
YE发布了新的文献求助10
29秒前
29秒前
情怀应助zougen采纳,获得10
30秒前
31秒前
32秒前
可爱的函函应助吐司匹林采纳,获得10
32秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
SIS-ISO/IEC TS 27100:2024 Information technology — Cybersecurity — Overview and concepts (ISO/IEC TS 27100:2020, IDT)(Swedish Standard) 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3231365
求助须知:如何正确求助?哪些是违规求助? 2878512
关于积分的说明 8206452
捐赠科研通 2545921
什么是DOI,文献DOI怎么找? 1375527
科研通“疑难数据库(出版商)”最低求助积分说明 647410
邀请新用户注册赠送积分活动 622508