Hierarchical Similarity Network Fusion for Discovering Cancer Subtypes

计算机科学 相似性(几何) 人工智能 轮廓 数据挖掘 维数之咒 传感器融合 光谱聚类 模式识别(心理学) 特征(语言学) 聚类分析 机器学习 图像(数学) 语言学 哲学
作者
Shuhui Liu,Xuequn Shang
出处
期刊:Lecture Notes in Computer Science 卷期号:: 125-136 被引量:4
标识
DOI:10.1007/978-3-319-94968-0_11
摘要

Recent breakthroughs in biologic sequencing technologies have cost-effectively yielded diverse types of observations. Integrative analysis of multiple platform cancer data, which is capable of revealing intrinsic characteristics of a biological process, has become an attractive research route on cancer subtypes discovery. Most machine learning based methods need represent each input data in unified space, losing certain important features or resulting in various noises in some data types. Furthermore, many network based data integration methods treat each type data independently, leading to a lot of inconsistent conclusions. Subsequently, similarity network fusion (SNF) was developed to deal with such questions. However, Euclidean distance metrics employed in SNF suffers curse of dimensionality and thus gives rise to poor results. To this end, we propose a new integrated method, dubbed hierarchical similarity network (HSNF), to learn a fused discriminating patient similarity network. HSNF randomly samples sub-features from different input data to construct multiple input similarity matrixes used as a basic of fusion so that diverse similarity matrixes are generated by multiple random sampling. Then we design a hierarchical fusion framework to make full use of the complementariness of diverse similarity networks from different feature modalities. Finally, based on the final fused similarity matrix, spectral clustering was used to discover cancer subtypes. Experimental results on five public cancer datasets manifest that HSNF can discover significantly different subtypes and can consistently outperform the-state-of-the-art in terms of silhouette, and p-value of survival analysis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
aging00发布了新的文献求助10
刚刚
doby发布了新的文献求助10
2秒前
秀丽小猫咪应助殷勤的紫槐采纳,获得500
2秒前
3秒前
清脆仙人掌完成签到 ,获得积分10
5秒前
6秒前
谦让寻凝完成签到 ,获得积分10
6秒前
donwe发布了新的文献求助10
7秒前
8秒前
9秒前
baiyeok发布了新的文献求助30
10秒前
zqzqz完成签到,获得积分10
11秒前
12秒前
鸡蛋布丁发布了新的文献求助10
13秒前
星光完成签到,获得积分10
14秒前
14秒前
土土完成签到,获得积分10
15秒前
简让完成签到 ,获得积分10
15秒前
19秒前
12木发布了新的文献求助10
21秒前
23秒前
28秒前
12木完成签到,获得积分10
30秒前
馍夹菜完成签到,获得积分10
33秒前
33秒前
LiQi完成签到,获得积分10
33秒前
37秒前
科目三应助zhu采纳,获得10
41秒前
Shan发布了新的文献求助10
42秒前
43秒前
浮游应助闭眼听风雨采纳,获得10
44秒前
yyanxuemin919发布了新的文献求助10
45秒前
青葱鱼块完成签到 ,获得积分10
48秒前
浅沐发布了新的文献求助10
48秒前
3dyf发布了新的文献求助10
50秒前
51秒前
Keyto7应助Wenfeifei采纳,获得10
53秒前
丹D完成签到,获得积分10
54秒前
蒲云海发布了新的文献求助10
59秒前
59秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Essential Guides for Early Career Teachers: Mental Well-being and Self-care 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5563611
求助须知:如何正确求助?哪些是违规求助? 4648542
关于积分的说明 14685176
捐赠科研通 4590481
什么是DOI,文献DOI怎么找? 2518577
邀请新用户注册赠送积分活动 1491168
关于科研通互助平台的介绍 1462471