Hierarchical Similarity Network Fusion for Discovering Cancer Subtypes

计算机科学 相似性(几何) 人工智能 轮廓 数据挖掘 维数之咒 传感器融合 光谱聚类 模式识别(心理学) 特征(语言学) 聚类分析 机器学习 图像(数学) 语言学 哲学
作者
Shuhui Liu,Xuequn Shang
出处
期刊:Lecture Notes in Computer Science 卷期号:: 125-136 被引量:4
标识
DOI:10.1007/978-3-319-94968-0_11
摘要

Recent breakthroughs in biologic sequencing technologies have cost-effectively yielded diverse types of observations. Integrative analysis of multiple platform cancer data, which is capable of revealing intrinsic characteristics of a biological process, has become an attractive research route on cancer subtypes discovery. Most machine learning based methods need represent each input data in unified space, losing certain important features or resulting in various noises in some data types. Furthermore, many network based data integration methods treat each type data independently, leading to a lot of inconsistent conclusions. Subsequently, similarity network fusion (SNF) was developed to deal with such questions. However, Euclidean distance metrics employed in SNF suffers curse of dimensionality and thus gives rise to poor results. To this end, we propose a new integrated method, dubbed hierarchical similarity network (HSNF), to learn a fused discriminating patient similarity network. HSNF randomly samples sub-features from different input data to construct multiple input similarity matrixes used as a basic of fusion so that diverse similarity matrixes are generated by multiple random sampling. Then we design a hierarchical fusion framework to make full use of the complementariness of diverse similarity networks from different feature modalities. Finally, based on the final fused similarity matrix, spectral clustering was used to discover cancer subtypes. Experimental results on five public cancer datasets manifest that HSNF can discover significantly different subtypes and can consistently outperform the-state-of-the-art in terms of silhouette, and p-value of survival analysis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
旅行的小七仔完成签到,获得积分10
1秒前
缥缈的忆山完成签到,获得积分10
1秒前
Qian完成签到,获得积分10
1秒前
凛冬完成签到,获得积分20
1秒前
2秒前
2秒前
Thinkol发布了新的文献求助10
2秒前
2秒前
七七完成签到,获得积分10
2秒前
Liu完成签到,获得积分10
3秒前
3秒前
无辜含桃完成签到,获得积分10
3秒前
3秒前
脑洞疼应助dhdgi采纳,获得10
4秒前
Wind应助史萌采纳,获得10
5秒前
小蔡完成签到,获得积分10
5秒前
小铭同学发布了新的文献求助80
5秒前
lu发布了新的文献求助10
6秒前
dyvdyvaass完成签到 ,获得积分10
6秒前
zzy完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
7秒前
LMX发布了新的文献求助10
7秒前
7秒前
7秒前
靓丽的发箍完成签到,获得积分10
7秒前
ppp完成签到,获得积分10
8秒前
科研通AI6应助凛冬采纳,获得10
8秒前
久ling关注了科研通微信公众号
8秒前
9秒前
9秒前
9秒前
9秒前
研友_Z63G18完成签到 ,获得积分10
9秒前
辛辛那提完成签到,获得积分10
9秒前
10秒前
10秒前
木辛完成签到,获得积分10
10秒前
Tsuki完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629869
求助须知:如何正确求助?哪些是违规求助? 4720921
关于积分的说明 14971132
捐赠科研通 4787826
什么是DOI,文献DOI怎么找? 2556570
邀请新用户注册赠送积分活动 1517709
关于科研通互助平台的介绍 1478285