Hierarchical Similarity Network Fusion for Discovering Cancer Subtypes

计算机科学 相似性(几何) 人工智能 轮廓 数据挖掘 维数之咒 传感器融合 光谱聚类 模式识别(心理学) 特征(语言学) 聚类分析 机器学习 图像(数学) 语言学 哲学
作者
Shuhui Liu,Xuequn Shang
出处
期刊:Lecture Notes in Computer Science 卷期号:: 125-136 被引量:4
标识
DOI:10.1007/978-3-319-94968-0_11
摘要

Recent breakthroughs in biologic sequencing technologies have cost-effectively yielded diverse types of observations. Integrative analysis of multiple platform cancer data, which is capable of revealing intrinsic characteristics of a biological process, has become an attractive research route on cancer subtypes discovery. Most machine learning based methods need represent each input data in unified space, losing certain important features or resulting in various noises in some data types. Furthermore, many network based data integration methods treat each type data independently, leading to a lot of inconsistent conclusions. Subsequently, similarity network fusion (SNF) was developed to deal with such questions. However, Euclidean distance metrics employed in SNF suffers curse of dimensionality and thus gives rise to poor results. To this end, we propose a new integrated method, dubbed hierarchical similarity network (HSNF), to learn a fused discriminating patient similarity network. HSNF randomly samples sub-features from different input data to construct multiple input similarity matrixes used as a basic of fusion so that diverse similarity matrixes are generated by multiple random sampling. Then we design a hierarchical fusion framework to make full use of the complementariness of diverse similarity networks from different feature modalities. Finally, based on the final fused similarity matrix, spectral clustering was used to discover cancer subtypes. Experimental results on five public cancer datasets manifest that HSNF can discover significantly different subtypes and can consistently outperform the-state-of-the-art in terms of silhouette, and p-value of survival analysis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shaojiaikeyan完成签到,获得积分10
刚刚
Mao发布了新的文献求助10
2秒前
阿峰发布了新的文献求助10
2秒前
3秒前
Lize完成签到,获得积分10
3秒前
希与发布了新的文献求助10
3秒前
nn发布了新的文献求助10
3秒前
领导范儿应助1820采纳,获得10
4秒前
4秒前
sasa发布了新的文献求助10
4秒前
5秒前
柒玉染完成签到,获得积分10
6秒前
呜呜完成签到,获得积分10
6秒前
6秒前
风清扬发布了新的文献求助10
7秒前
7秒前
CipherSage应助Robin采纳,获得10
7秒前
我爱学习完成签到,获得积分10
8秒前
8秒前
8秒前
木木木完成签到,获得积分10
9秒前
sy完成签到,获得积分10
9秒前
科研通AI6应助子车凡采纳,获得10
9秒前
痴情的白易完成签到 ,获得积分20
10秒前
解解闷发布了新的文献求助10
10秒前
fufufu123完成签到 ,获得积分10
11秒前
量子星尘发布了新的文献求助10
11秒前
微笑的觅夏完成签到 ,获得积分10
11秒前
锅包又完成签到 ,获得积分10
12秒前
李健应助ZZQQ采纳,获得10
12秒前
刘丰铭发布了新的文献求助10
12秒前
12秒前
12秒前
柒玉染发布了新的文献求助10
13秒前
kqkqkqkqkq完成签到,获得积分20
14秒前
阿美完成签到,获得积分10
14秒前
YaRu发布了新的文献求助10
16秒前
16秒前
1820发布了新的文献求助10
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608292
求助须知:如何正确求助?哪些是违规求助? 4692876
关于积分的说明 14875899
捐赠科研通 4717214
什么是DOI,文献DOI怎么找? 2544162
邀请新用户注册赠送积分活动 1509147
关于科研通互助平台的介绍 1472809