Hierarchical Similarity Network Fusion for Discovering Cancer Subtypes

计算机科学 相似性(几何) 人工智能 轮廓 数据挖掘 维数之咒 传感器融合 光谱聚类 模式识别(心理学) 特征(语言学) 聚类分析 机器学习 图像(数学) 语言学 哲学
作者
Shuhui Liu,Xuequn Shang
出处
期刊:Lecture Notes in Computer Science 卷期号:: 125-136 被引量:4
标识
DOI:10.1007/978-3-319-94968-0_11
摘要

Recent breakthroughs in biologic sequencing technologies have cost-effectively yielded diverse types of observations. Integrative analysis of multiple platform cancer data, which is capable of revealing intrinsic characteristics of a biological process, has become an attractive research route on cancer subtypes discovery. Most machine learning based methods need represent each input data in unified space, losing certain important features or resulting in various noises in some data types. Furthermore, many network based data integration methods treat each type data independently, leading to a lot of inconsistent conclusions. Subsequently, similarity network fusion (SNF) was developed to deal with such questions. However, Euclidean distance metrics employed in SNF suffers curse of dimensionality and thus gives rise to poor results. To this end, we propose a new integrated method, dubbed hierarchical similarity network (HSNF), to learn a fused discriminating patient similarity network. HSNF randomly samples sub-features from different input data to construct multiple input similarity matrixes used as a basic of fusion so that diverse similarity matrixes are generated by multiple random sampling. Then we design a hierarchical fusion framework to make full use of the complementariness of diverse similarity networks from different feature modalities. Finally, based on the final fused similarity matrix, spectral clustering was used to discover cancer subtypes. Experimental results on five public cancer datasets manifest that HSNF can discover significantly different subtypes and can consistently outperform the-state-of-the-art in terms of silhouette, and p-value of survival analysis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助科研通管家采纳,获得10
刚刚
Owen应助科研通管家采纳,获得10
刚刚
无极微光应助科研通管家采纳,获得20
刚刚
HAL应助科研通管家采纳,获得10
刚刚
领导范儿应助科研通管家采纳,获得10
刚刚
小二郎应助科研通管家采纳,获得10
刚刚
科研通AI6应助科研通管家采纳,获得30
刚刚
刚刚
路人应助科研通管家采纳,获得200
刚刚
斯文败类应助科研通管家采纳,获得10
刚刚
CR7应助科研通管家采纳,获得20
刚刚
汉堡包应助科研通管家采纳,获得10
刚刚
wanci应助科研通管家采纳,获得10
刚刚
NexusExplorer应助科研通管家采纳,获得10
1秒前
Yu应助科研通管家采纳,获得10
1秒前
1秒前
pluto应助科研通管家采纳,获得10
1秒前
成事在人307完成签到,获得积分10
1秒前
李爱国应助科研通管家采纳,获得10
1秒前
打打应助科研通管家采纳,获得10
1秒前
深情安青应助科研通管家采纳,获得10
1秒前
打打应助科研通管家采纳,获得10
1秒前
吕洺旭应助科研通管家采纳,获得10
1秒前
英俊的铭应助科研通管家采纳,获得10
1秒前
爆米花应助科研通管家采纳,获得10
1秒前
斯文败类应助科研通管家采纳,获得10
1秒前
脑洞疼应助科研通管家采纳,获得10
1秒前
后来应助科研通管家采纳,获得10
1秒前
1秒前
闪闪的乐松完成签到 ,获得积分10
1秒前
HAL应助科研通管家采纳,获得10
1秒前
彭于彦祖应助科研通管家采纳,获得30
1秒前
星辰大海应助科研通管家采纳,获得10
1秒前
风清扬应助科研通管家采纳,获得30
2秒前
2秒前
传奇3应助科研通管家采纳,获得20
2秒前
思源应助科研通管家采纳,获得10
2秒前
在水一方应助科研通管家采纳,获得10
2秒前
桐桐应助科研通管家采纳,获得10
2秒前
科目三应助科研通管家采纳,获得10
2秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Peptide Synthesis_Methods and Protocols 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603729
求助须知:如何正确求助?哪些是违规求助? 4688711
关于积分的说明 14855620
捐赠科研通 4694855
什么是DOI,文献DOI怎么找? 2540965
邀请新用户注册赠送积分活动 1507131
关于科研通互助平台的介绍 1471814