Artificial intelligence machine learning-based coronary CT fractional flow reserve (CT-FFRML): Impact of iterative and filtered back projection reconstruction techniques.

人工智能 图像质量 心脏成像 断层摄影术 投影(关系代数) 放射科 成像体模 图像噪声
作者
Domenico Mastrodicasa,Moritz H. Albrecht,U. Joseph Schoepf,Akos Varga-Szemes,Brian E. Jacobs,Sebastian Gassenmaier,Domenico De Santis,Marwen Eid,Marly van Assen,Chris Tesche,Cesare Mantini,Carlo N. De Cecco
出处
期刊:Journal of Cardiovascular Computed Tomography [Elsevier]
卷期号:13 (6): 331-335 被引量:13
标识
DOI:10.1016/j.jcct.2018.10.026
摘要

Abstract Background The influence of computed tomography (CT) reconstruction algorithms on the performance of machine-learning-based CT-derived fractional flow reserve (CT-FFRML) has not been investigated. CT-FFRML values and processing time of two reconstruction algorithms were compared using an on-site workstation. Methods CT-FFRML was computed on 40 coronary CT angiography (CCTA) datasets that were reconstructed with both iterative reconstruction in image space (IRIS) and filtered back-projection (FBP) algorithms. CT-FFRML was computed on a per-vessel and per-segment basis as well as distal to lesions with ≥50% stenosis on CCTA. Processing times were recorded. Significant flow-limiting stenosis was defined as invasive FFR and CT-FFRML values ≤ 0.80. Pearson's correlation, Wilcoxon, and McNemar statistical testing were used for data analysis. Results Per-vessel analysis of IRIS and FBP reconstructions demonstrated significantly different CT-FFRML values (p ≤ 0.05). Correlation of CT-FFRML values between algorithms was high for the left main (r = 0.74), left anterior descending (r = 0.76), and right coronary (r = 0.70) arteries. Proximal and middle segments showed a high correlation of CT-FFRML values (r = 0.73 and r = 0.67, p ≤ 0.001, respectively), despite having significantly different averages (p ≤ 0.05). No difference in diagnostic accuracy was observed (both 81.8%, p = 1.000). Of the 40 patients, 10 had invasive FFR results. Per-lesion correlation with invasive FFR values was moderate for IRIS (r = 0.53, p = 0.117) and FBP (r = 0.49, p = 0.142). Processing time was significantly shorter using IRIS (15.9 vs. 19.8 min, p ≤ 0.05). Conclusion CT reconstruction algorithms influence CT-FFRML analysis, potentially affecting patient management. Additionally, iterative reconstruction improves CT-FFRML post-processing speed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
闪闪幼南完成签到,获得积分10
刚刚
狄淇儿完成签到,获得积分10
刚刚
1秒前
3秒前
CGBY完成签到 ,获得积分10
3秒前
Judy完成签到 ,获得积分10
3秒前
笨笨乘风完成签到,获得积分10
3秒前
4秒前
bb完成签到,获得积分10
4秒前
想把太阳揣兜里完成签到,获得积分10
4秒前
wux完成签到 ,获得积分10
4秒前
小杨完成签到,获得积分10
5秒前
田様应助沉静的乘风采纳,获得10
5秒前
北辰完成签到 ,获得积分10
5秒前
6秒前
Bioflying完成签到,获得积分10
6秒前
qixingbao07126完成签到,获得积分10
6秒前
komorebi发布了新的文献求助10
7秒前
顾难摧完成签到 ,获得积分10
7秒前
fuguier完成签到,获得积分10
8秒前
寻水的鱼完成签到,获得积分10
8秒前
方赫然完成签到,获得积分0
8秒前
像风完成签到,获得积分10
8秒前
公西傲蕾发布了新的文献求助10
9秒前
dxm完成签到,获得积分10
9秒前
wentong完成签到,获得积分10
10秒前
上官若男应助谷粱诗云采纳,获得10
10秒前
我才是孙悟空完成签到 ,获得积分10
11秒前
牛牛123完成签到 ,获得积分10
11秒前
竭缘完成签到,获得积分10
12秒前
摇光完成签到,获得积分10
12秒前
sherryry完成签到,获得积分10
13秒前
执着的水杯完成签到,获得积分10
14秒前
知性的凡梅完成签到,获得积分10
14秒前
x9816完成签到,获得积分20
14秒前
夜凉如水完成签到,获得积分10
14秒前
dmr完成签到,获得积分10
15秒前
16秒前
沉默的谷秋完成签到,获得积分10
17秒前
浅暖完成签到 ,获得积分10
17秒前
高分求助中
Genetics: From Genes to Genomes 3000
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Diabetes: miniguías Asklepios 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3471687
求助须知:如何正确求助?哪些是违规求助? 3064600
关于积分的说明 9089012
捐赠科研通 2755276
什么是DOI,文献DOI怎么找? 1511947
邀请新用户注册赠送积分活动 698621
科研通“疑难数据库(出版商)”最低求助积分说明 698494