Molecular Dynamics Simulation of Zinc Ion in Water with an ab Initio Based Neural Network Potential

化学 分子动力学 离子 人工神经网络 从头算 化学物理 动力学(音乐) 计算化学 材料科学 计算机科学 人工智能 物理 有机化学 声学
作者
Mingyuan Xu,Tong Zhu,John Z. H. Zhang
出处
期刊:Journal of Physical Chemistry A [American Chemical Society]
卷期号:123 (30): 6587-6595 被引量:26
标识
DOI:10.1021/acs.jpca.9b04087
摘要

An artificial neural network provides the possibility to develop molecular potentials with both the efficiency of the classical molecular mechanics and the accuracy of the quantum chemical methods. Here, we develop an ab initio based neural network potential (NN/MM-RESP) to perform molecular dynamics study of zinc ion in liquid water. In this approach, the interaction energy, atomic forces, and atomic charges of zinc ion and water molecules in the first solvent shell are described by a neural network potential trained with energies and forces generated from density functional calculations. The predicted energies and forces from the NN potential show excellent agreement with the quantum chemistry calculations. Using this approach, we carried out molecular dynamics simulation to study the hydration of zinc ion in water. The experimentally observed zinc–water radial distribution function, as well as the X-ray absorption near edge structure spectrum, is well-reproduced by the MD simulation. Comparison of the results with other theoretical calculations is provided, and important features of the present approach are discussed. The neural network approach used in this study can be applied to construct potentials to study solvation of other metal ions, and its salient features can shed light on the development of more accurate molecular potentials for metal ions in other environments such as proteins.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
高高迎蓉关注了科研通微信公众号
刚刚
专注的水壶完成签到 ,获得积分10
刚刚
1秒前
1秒前
1秒前
Ava应助doudou采纳,获得10
2秒前
2秒前
上官若男应助可颂采纳,获得10
2秒前
3秒前
哎呀妈呀发布了新的文献求助10
3秒前
3秒前
zzx完成签到,获得积分10
4秒前
何何完成签到 ,获得积分10
4秒前
jackhlj完成签到,获得积分10
4秒前
香蕉觅云应助乐小佳采纳,获得10
5秒前
大胆夜绿完成签到,获得积分10
5秒前
青wu完成签到,获得积分10
5秒前
6秒前
竹筏过海应助锦鲤云间月采纳,获得30
6秒前
菠萝吹雪遇见梨花诗完成签到 ,获得积分10
6秒前
杨天水发布了新的文献求助10
7秒前
7秒前
VDC应助梁liang采纳,获得30
7秒前
chen发布了新的文献求助10
7秒前
7秒前
青wu发布了新的文献求助10
8秒前
a龙完成签到,获得积分10
8秒前
眯眯眼的老鼠完成签到,获得积分20
8秒前
无花果应助科研通管家采纳,获得10
8秒前
斯文败类应助科研通管家采纳,获得10
9秒前
wanci应助嗯哼采纳,获得10
9秒前
nanan完成签到,获得积分10
9秒前
9秒前
星辰大海应助科研通管家采纳,获得10
9秒前
Hungrylunch应助科研通管家采纳,获得20
9秒前
Cassie应助科研通管家采纳,获得10
9秒前
爆米花应助科研通管家采纳,获得10
9秒前
酷波er应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
暴躁四叔应助科研通管家采纳,获得20
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672