Molecular Dynamics Simulation of Zinc Ion in Water with an ab Initio Based Neural Network Potential

化学 分子动力学 溶剂化 离子 人工神经网络 从头算 化学物理 溶剂化壳 计算化学 分子 水溶液中的金属离子 从头算量子化学方法 量子 材料科学 径向分布函数 密度泛函理论 量子化学 原子物理学 分子物理学 力场(虚构) 电子结构
作者
Mingyuan Xu,Tong Zhu,John Z. H. Zhang
出处
期刊:Journal of Physical Chemistry A [American Chemical Society]
卷期号:123 (30): 6587-6595 被引量:40
标识
DOI:10.1021/acs.jpca.9b04087
摘要

An artificial neural network provides the possibility to develop molecular potentials with both the efficiency of the classical molecular mechanics and the accuracy of the quantum chemical methods. Here, we develop an ab initio based neural network potential (NN/MM-RESP) to perform molecular dynamics study of zinc ion in liquid water. In this approach, the interaction energy, atomic forces, and atomic charges of zinc ion and water molecules in the first solvent shell are described by a neural network potential trained with energies and forces generated from density functional calculations. The predicted energies and forces from the NN potential show excellent agreement with the quantum chemistry calculations. Using this approach, we carried out molecular dynamics simulation to study the hydration of zinc ion in water. The experimentally observed zinc-water radial distribution function, as well as the X-ray absorption near edge structure spectrum, is well-reproduced by the MD simulation. Comparison of the results with other theoretical calculations is provided, and important features of the present approach are discussed. The neural network approach used in this study can be applied to construct potentials to study solvation of other metal ions, and its salient features can shed light on the development of more accurate molecular potentials for metal ions in other environments such as proteins.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
海洋无双完成签到,获得积分10
2秒前
moiaoh发布了新的文献求助10
2秒前
开心爆米花完成签到 ,获得积分10
3秒前
666完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
1157588380完成签到,获得积分10
4秒前
琳毓完成签到,获得积分10
4秒前
海洋无双发布了新的文献求助10
4秒前
直率的花生完成签到,获得积分10
4秒前
苏邑完成签到,获得积分10
5秒前
5秒前
bubble完成签到,获得积分10
6秒前
7秒前
研友_VZG7GZ应助zhang采纳,获得10
7秒前
7秒前
7秒前
7秒前
7秒前
8秒前
8秒前
8秒前
8秒前
8秒前
8秒前
8秒前
8秒前
登望完成签到,获得积分10
8秒前
8秒前
8秒前
8秒前
8秒前
9秒前
布打勒应助科研通管家采纳,获得10
9秒前
9秒前
星辰大海应助科研通管家采纳,获得10
9秒前
小马甲应助科研通管家采纳,获得10
9秒前
9秒前
ZZ发布了新的文献求助10
9秒前
Orange应助科研通管家采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5736188
求助须知:如何正确求助?哪些是违规求助? 5364682
关于积分的说明 15332653
捐赠科研通 4880103
什么是DOI,文献DOI怎么找? 2622609
邀请新用户注册赠送积分活动 1571580
关于科研通互助平台的介绍 1528408