Molecular Dynamics Simulation of Zinc Ion in Water with an ab Initio Based Neural Network Potential

化学 分子动力学 溶剂化 离子 人工神经网络 从头算 化学物理 溶剂化壳 计算化学 分子 水溶液中的金属离子 从头算量子化学方法 量子 材料科学 径向分布函数 密度泛函理论 量子化学 原子物理学 分子物理学 力场(虚构) 电子结构
作者
Mingyuan Xu,Tong Zhu,John Z. H. Zhang
出处
期刊:Journal of Physical Chemistry A [American Chemical Society]
卷期号:123 (30): 6587-6595 被引量:40
标识
DOI:10.1021/acs.jpca.9b04087
摘要

An artificial neural network provides the possibility to develop molecular potentials with both the efficiency of the classical molecular mechanics and the accuracy of the quantum chemical methods. Here, we develop an ab initio based neural network potential (NN/MM-RESP) to perform molecular dynamics study of zinc ion in liquid water. In this approach, the interaction energy, atomic forces, and atomic charges of zinc ion and water molecules in the first solvent shell are described by a neural network potential trained with energies and forces generated from density functional calculations. The predicted energies and forces from the NN potential show excellent agreement with the quantum chemistry calculations. Using this approach, we carried out molecular dynamics simulation to study the hydration of zinc ion in water. The experimentally observed zinc-water radial distribution function, as well as the X-ray absorption near edge structure spectrum, is well-reproduced by the MD simulation. Comparison of the results with other theoretical calculations is provided, and important features of the present approach are discussed. The neural network approach used in this study can be applied to construct potentials to study solvation of other metal ions, and its salient features can shed light on the development of more accurate molecular potentials for metal ions in other environments such as proteins.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
明朗发布了新的文献求助10
1秒前
1秒前
Junyi发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
2秒前
Owen应助虚心飞鸟采纳,获得50
2秒前
酷波er应助nicolight采纳,获得10
2秒前
3秒前
村村发布了新的文献求助10
3秒前
大方嵩发布了新的文献求助10
5秒前
yr应助andrele采纳,获得30
5秒前
6秒前
cherry发布了新的文献求助10
6秒前
小王发布了新的文献求助10
6秒前
6秒前
QIEZI关注了科研通微信公众号
8秒前
CipherSage应助炮炮公主采纳,获得10
8秒前
lhj完成签到,获得积分10
9秒前
9秒前
10秒前
10秒前
量子星尘发布了新的文献求助10
11秒前
12秒前
小z发布了新的文献求助10
14秒前
小天草水母完成签到 ,获得积分10
14秒前
14秒前
量子星尘发布了新的文献求助10
15秒前
村村完成签到,获得积分10
15秒前
15秒前
科研通AI6.1应助小王采纳,获得10
16秒前
sht1发布了新的文献求助10
17秒前
18秒前
19秒前
希望天下0贩的0应助肉卷采纳,获得10
20秒前
Candy2024完成签到 ,获得积分10
21秒前
QIEZI发布了新的文献求助10
21秒前
21秒前
ableyy完成签到 ,获得积分10
22秒前
23秒前
盼坨完成签到,获得积分20
23秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5771499
求助须知:如何正确求助?哪些是违规求助? 5591993
关于积分的说明 15427668
捐赠科研通 4904815
什么是DOI,文献DOI怎么找? 2639018
邀请新用户注册赠送积分活动 1586798
关于科研通互助平台的介绍 1541797