Molecular Simulations of MOF Membranes and Performance Predictions of MOF/Polymer Mixed Matrix Membranes for CO2/CH4 Separations

气体分离 选择性 金属有机骨架 巴勒 聚合物 材料科学 分子动力学 化学工程 化学 纳米技术 有机化学 计算化学 吸附 催化作用 工程类 复合材料 生物化学
作者
Çiğdem Altıntaş,Seda Keskın
出处
期刊:ACS Sustainable Chemistry & Engineering [American Chemical Society]
卷期号:7 (2): 2739-2750 被引量:84
标识
DOI:10.1021/acssuschemeng.8b05832
摘要

Efficient separation of CO2 from CO2/CH4 mixtures using membranes has economic, environmental and industrial importance. Membrane technologies are currently dominated by polymers due to their processing abilities and low manufacturing costs. However, polymeric membranes suffer from either low gas permeabilities or low selectivities. Metal organic frameworks (MOFs) are suggested as potential membrane candidates that offer both high selectivity and permeability for CO2/CH4 separation. Experimental testing of every single synthesized MOF material as membranes is not practical due to the availability of thousands of different MOF materials. A multilevel, high-throughput computational screening methodology was used to examine the MOF database for membrane-based CO2/CH4 separation. MOF membranes offering the best combination of CO2 permeability (>106 Barrer) and CO2/CH4 selectivity (>80) were identified by combining grand canonical Monte Carlo and molecular dynamics simulations. Results revealed that the best MOF membranes are located above the Robeson's upper bound indicating that they outperform polymeric membranes for CO2/CH4 separation. The impact of framework flexibility on the membrane properties of the selected top MOFs was studied by comparing the results of rigid and flexible molecular simulations. Relations between structures and performances of MOFs were also investigated to provide atomic-level insights into the design of novel MOFs which will be useful for CO2/CH4 separation processes. We also predicted permeabilities and selectivities of the mixed matrix membranes (MMM) in which the best MOF candidates are incorporated as filler particles into polymers and found that MOF-based MMMs have significantly higher CO2 permeabilities and moderately higher selectivities than pure polymers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
研友_QQC完成签到,获得积分10
2秒前
NeuroWhite完成签到,获得积分10
2秒前
2秒前
搜索v完成签到,获得积分10
3秒前
liuchuck完成签到 ,获得积分10
3秒前
3秒前
3秒前
猫独秀完成签到,获得积分10
3秒前
5秒前
buno应助yuefeng采纳,获得10
5秒前
yiming完成签到,获得积分10
5秒前
落落发布了新的文献求助10
6秒前
清秋若月完成签到 ,获得积分10
6秒前
6秒前
呵呵呵呵完成签到,获得积分10
7秒前
7秒前
远方发布了新的文献求助10
8秒前
zxc111关注了科研通微信公众号
8秒前
9秒前
nanhe698发布了新的文献求助10
9秒前
Huang完成签到,获得积分10
9秒前
碳土不凡完成签到 ,获得积分10
10秒前
10秒前
淡淡采白发布了新的文献求助10
11秒前
11秒前
12秒前
Akim应助dingdong采纳,获得10
12秒前
12秒前
12秒前
satchzhao发布了新的文献求助10
12秒前
可爱的函函应助尺素寸心采纳,获得10
12秒前
66发布了新的文献求助10
13秒前
一鸣完成签到,获得积分10
13秒前
13秒前
ding应助呵呵呵呵采纳,获得10
13秒前
13秒前
汉堡包应助hkxfg采纳,获得10
15秒前
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808