Survival outcome prediction in cervical cancer: Cox models vs deep-learning model

比例危险模型 医学 危险系数 生存分析 一致性 宫颈癌 回归 阶段(地层学) 肿瘤科 内科学 癌症 统计 置信区间 数学 古生物学 生物
作者
Koji Matsuo,Sanjay Purushotham,Bo Jiang,Rachel S. Mandelbaum,Tsuyoshi Takiuchi,Yan Liu,Lynda D. Roman
出处
期刊:American Journal of Obstetrics and Gynecology [Elsevier]
卷期号:220 (4): 381.e1-381.e14 被引量:125
标识
DOI:10.1016/j.ajog.2018.12.030
摘要

Historically, the Cox proportional hazard regression model has been the mainstay for survival analyses in oncologic research. The Cox proportional hazard regression model generally is used based on an assumption of linear association. However, it is likely that, in reality, there are many clinicopathologic features that exhibit a nonlinear association in biomedicine.The purpose of this study was to compare the deep-learning neural network model and the Cox proportional hazard regression model in the prediction of survival in women with cervical cancer.This was a retrospective pilot study of consecutive cases of newly diagnosed stage I-IV cervical cancer from 2000-2014. A total of 40 features that included patient demographics, vital signs, laboratory test results, tumor characteristics, and treatment types were assessed for analysis and grouped into 3 feature sets. The deep-learning neural network model was compared with the Cox proportional hazard regression model and 3 other survival analysis models for progression-free survival and overall survival. Mean absolute error and concordance index were used to assess the performance of these 5 models.There were 768 women included in the analysis. The median age was 49 years, and the majority were Hispanic (71.7%). The majority of tumors were squamous (75.3%) and stage I (48.7%). The median follow-up time was 40.2 months; there were 241 events for recurrence and progression and 170 deaths during the follow-up period. The deep-learning model showed promising results in the prediction of progression-free survival when compared with the Cox proportional hazard regression model (mean absolute error, 29.3 vs 316.2). The deep-learning model also outperformed all the other models, including the Cox proportional hazard regression model, for overall survival (mean absolute error, Cox proportional hazard regression vs deep-learning, 43.6 vs 30.7). The performance of the deep-learning model further improved when more features were included (concordance index for progression-free survival: 0.695 for 20 features, 0.787 for 36 features, and 0.795 for 40 features). There were 10 features for progression-free survival and 3 features for overall survival that demonstrated significance only in the deep-learning model, but not in the Cox proportional hazard regression model. There were no features for progression-free survival and 3 features for overall survival that demonstrated significance only in the Cox proportional hazard regression model, but not in the deep-learning model.Our study suggests that the deep-learning neural network model may be a useful analytic tool for survival prediction in women with cervical cancer because it exhibited superior performance compared with the Cox proportional hazard regression model. This novel analytic approach may provide clinicians with meaningful survival information that potentially could be integrated into treatment decision-making and planning. Further validation studies are necessary to support this pilot study.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爱哀Crazy发布了新的文献求助10
1秒前
科研韭菜完成签到,获得积分10
1秒前
NemoNIE完成签到,获得积分10
2秒前
2秒前
鲜艳的马里奥给鲜艳的马里奥的求助进行了留言
2秒前
2秒前
顾矜应助活力亦瑶采纳,获得10
2秒前
2秒前
4秒前
科研小白完成签到,获得积分10
4秒前
沉静丹寒发布了新的文献求助10
4秒前
研友_EZ1GJL发布了新的文献求助10
4秒前
烟花应助龍焱采纳,获得10
5秒前
Sucrapipple完成签到,获得积分10
5秒前
shanshanshan发布了新的文献求助30
5秒前
5秒前
紫不语发布了新的文献求助10
6秒前
大力的戎完成签到,获得积分10
6秒前
小二郎应助安安安呐采纳,获得10
6秒前
jasmine发布了新的文献求助10
6秒前
难过的一一完成签到,获得积分10
7秒前
zhangjw2016完成签到,获得积分10
7秒前
培a完成签到,获得积分10
7秒前
科研小白发布了新的文献求助10
7秒前
8秒前
大模型应助雨夜星空采纳,获得10
8秒前
ethan2801完成签到,获得积分10
9秒前
jiyixiao1完成签到,获得积分10
9秒前
xxx完成签到 ,获得积分10
9秒前
10秒前
joker发布了新的文献求助10
11秒前
11秒前
鲤鱼凛完成签到,获得积分10
12秒前
12秒前
小蘑菇应助高高可乐采纳,获得10
12秒前
Jasper应助沉静丹寒采纳,获得10
12秒前
小鑫鑫1027发布了新的文献求助10
13秒前
13秒前
13秒前
米兰达完成签到 ,获得积分10
14秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
山海经图录 李云中版 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3327340
求助须知:如何正确求助?哪些是违规求助? 2957611
关于积分的说明 8586666
捐赠科研通 2635772
什么是DOI,文献DOI怎么找? 1442556
科研通“疑难数据库(出版商)”最低求助积分说明 668298
邀请新用户注册赠送积分活动 655358