Deep residual learning-based fault diagnosis method for rotating machinery

断层(地质) 残余物 人工神经网络 信号(编程语言) 方位(导航) 人工智能 计算机科学 深度学习 振动 信号处理 工程类 机器学习 模式识别(心理学) 控制工程 数据挖掘 算法 物理 地质学 地震学 电信 程序设计语言 量子力学 雷达
作者
Wei Zhang,Xiang Li,Qian Ding
出处
期刊:Isa Transactions [Elsevier BV]
卷期号:95: 295-305 被引量:282
标识
DOI:10.1016/j.isatra.2018.12.025
摘要

Effective fault diagnosis of rotating machinery has always been an important issue in real industries. In the recent years, data-driven fault diagnosis methods such as neural networks have been receiving increasing attention due to their great merits of high diagnosis accuracy and easy implementation. However, it is mostly difficult to fully train a deep neural network since gradients in optimization may vanish or explode during back-propagation, which results in deterioration and noticeable variance in model performance. In fault diagnosis researches, larger data sequence of machinery vibration signal containing sufficient information is usually preferred and consequently, deep models with large capacity are generally adopted. In order to improve network training, a residual learning algorithm is proposed in this paper. The proposed architecture significantly improves the information flow throughout the network, which is well suited for processing machinery vibration signal with variable sequential length. Little prior expertise on fault diagnosis and signal processing is required, that facilitates industrial applications of the proposed method. Experiments on a popular rolling bearing dataset are implemented to validate the proposed method. The results of this study suggest that the proposed intelligent fault diagnosis method for rotating machinery offers a new and promising approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
柒辞完成签到,获得积分10
1秒前
2秒前
zy95282发布了新的文献求助10
2秒前
2秒前
2秒前
幸福的雪枫完成签到,获得积分10
3秒前
4秒前
WHHW发布了新的文献求助10
4秒前
AixGnad完成签到,获得积分10
5秒前
njupt连赛通完成签到,获得积分10
6秒前
6秒前
6秒前
学习第一名完成签到,获得积分10
6秒前
7秒前
季春九发布了新的文献求助20
7秒前
8秒前
姜紫文发布了新的文献求助10
8秒前
8秒前
CipherSage应助lyn采纳,获得10
8秒前
我是老大应助脑子大聪明采纳,获得30
9秒前
hongw1980完成签到,获得积分10
10秒前
10秒前
所所应助繁荣的菲音采纳,获得10
11秒前
Luo完成签到,获得积分10
11秒前
Akim应助粗暴的万仇采纳,获得10
11秒前
11秒前
12秒前
13秒前
流体离子发电机完成签到,获得积分10
13秒前
dawn发布了新的文献求助10
13秒前
14秒前
小胡爱科研完成签到,获得积分10
14秒前
as发布了新的文献求助10
14秒前
hongw1980发布了新的文献求助10
15秒前
huangnvshi完成签到,获得积分10
16秒前
17秒前
18秒前
福轩发布了新的文献求助10
18秒前
Luo发布了新的文献求助10
19秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998752
求助须知:如何正确求助?哪些是违规求助? 3538216
关于积分的说明 11273702
捐赠科研通 3277200
什么是DOI,文献DOI怎么找? 1807436
邀请新用户注册赠送积分活动 883893
科研通“疑难数据库(出版商)”最低求助积分说明 810075