Multiple testing strategies for clinical trials with co-primary endpoints in all comers and a subgroup.

邦费罗尼校正 多重比较问题 子群分析 样本量测定 医学 临床终点 I类和II类错误 无效假设 错误发现率 人口 统计 临床试验 随机化 危险系数 肿瘤科 内科学 荟萃分析 数学 置信区间 基因 环境卫生 生物化学 化学
作者
Jack Linchuan Qiu,Vivian G. Ng,Yan Li,Qianghua Xia
出处
期刊:Journal of Clinical Oncology [American Society of Clinical Oncology]
卷期号:34 (15_suppl): e14041-e14041
标识
DOI:10.1200/jco.2016.34.15_suppl.e14041
摘要

e14041 Background: In this new era of precision medicine, subgroup analyses have become increasingly critical for the success of oncology drug development. When the treatment benefit is still uncertain in the subgroup, sometimes registrational trials are designed to have co-primary endpoints, e.g. the same endpoint tested in both the all comer population and a (biomarker specified) subgroup with the family-wise Type 1 error being strongly controlled. Many multiple testing methods have been proposed and applied to address multiplicity issues for such designs. In this work we did a comprehensive review of current methods and compared their advantages and disadvantages. Methods: In a simple scenario of testing one endpoint in an oncology trial, assuming known sample size, randomization ratio and hazard ratio in subgroup and all comers, respectively, we reviewed six alpha spending methods including Bonferroni's method, fixed sequence method, Hochberg's step up method, Holm's step-down method, alpha fall back method, and flexible alpha spending method(by Alosh and Huque) as well as their variations by taking the correlation between the two populations into consideration. Comparisons were made in terms of the power of rejecting the null hypothesis in all comers, subgroup, or either group under different parameter settings. The optimal alpha sharing strategy under different scenarios was then explored. Results: A function in R was developed for the comparison of six methods. Hochberg's method consistently outperforms Bonferroni's and Holm's method in all scenarios. By taking consideration of the correlation between subgroup and all comers, the performance of Bonferroni's, Hochberg's and Holm's methods are all improved. The choice of an optimal method strongly depends on the strategic context of each trial. But among the six methods including the variations discussed in this work, flexible alpha spending method by Alosh and Huque seems to outperform other methods when alpha is appropriately allocated between the subgroup and all comers. Conclusions: Our work provided a practical tool for users to compare the pros-and-cons and make trade offs between different alpha-spending methods under possible scenarios.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
简单山水完成签到,获得积分10
1秒前
周周发布了新的文献求助10
2秒前
2秒前
2秒前
夏沫完成签到,获得积分10
3秒前
科研通AI6.1应助w32采纳,获得20
5秒前
量子星尘发布了新的文献求助10
5秒前
小孟小孟发布了新的文献求助30
6秒前
7秒前
8秒前
8秒前
10秒前
lzy发布了新的文献求助10
11秒前
12秒前
orange完成签到,获得积分10
12秒前
安静发布了新的文献求助10
12秒前
orixero应助苗苗会喵喵采纳,获得10
12秒前
自信雪冥发布了新的文献求助30
14秒前
量子星尘发布了新的文献求助10
15秒前
17秒前
无敌金刚芭比完成签到,获得积分10
18秒前
18秒前
Hanif5329完成签到,获得积分10
18秒前
险胜发布了新的文献求助10
18秒前
飞快的书南完成签到 ,获得积分10
18秒前
安静完成签到,获得积分20
18秒前
科研通AI2S应助头大采纳,获得10
19秒前
19秒前
完美世界应助小研采纳,获得10
21秒前
我要资料啊完成签到,获得积分10
21秒前
21秒前
陈老太完成签到 ,获得积分10
21秒前
橘子皮完成签到,获得积分10
21秒前
华仔应助心海采纳,获得10
21秒前
打打应助哈哈哈哈啊哈采纳,获得10
22秒前
22秒前
22秒前
小蘑菇应助默默的XJ采纳,获得10
23秒前
眼睛大的迎梦完成签到,获得积分10
24秒前
CX330完成签到,获得积分10
24秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742729
求助须知:如何正确求助?哪些是违规求助? 5409935
关于积分的说明 15345601
捐赠科研通 4883834
什么是DOI,文献DOI怎么找? 2625399
邀请新用户注册赠送积分活动 1574188
关于科研通互助平台的介绍 1531146