Automatic velocity picking with convolutional neural networks

计算机科学 卷积神经网络 预处理器 人工智能 中心(范畴论) 数据预处理 介绍(产科) 算法 机器学习 数据挖掘 模式识别(心理学) 结晶学 医学 放射科 化学
作者
Yue Ma,Xu Ji,Tong W. Fei,Yi Luo
标识
DOI:10.1190/segam2018-2987088.1
摘要

PreviousNext No AccessSEG Technical Program Expanded Abstracts 2018Automatic velocity picking with convolutional neural networksAuthors: Yue MaXu JiTong W. FeiYi LuoYue MaAramco Research Center – Beijing, Aramco AsiaSearch for more papers by this author, Xu JiEXPEC Advanced Research Center, Saudi AramcoSearch for more papers by this author, Tong W. FeiEXPEC Advanced Research Center, Saudi AramcoSearch for more papers by this author, and Yi LuoEXPEC Advanced Research Center, Saudi AramcoSearch for more papers by this authorhttps://doi.org/10.1190/segam2018-2987088.1 SectionsSupplemental MaterialAboutPDF/ePub ToolsAdd to favoritesDownload CitationsTrack CitationsPermissions ShareFacebookTwitterLinked InRedditEmail AbstractWe developed an automatic velocity picking methodology based on convolutional neural networks (ConvNets). The proposed method formalizes the picking problem into a ConvNet regression model to map the NMO-corrected seismic gather to the velocity error estimates. We also propose a data preprocessing technique to normalize the shallow and deep reflections of a CMP gather into the same moveout shape, which is a key ingredient for successful training. A synthetic example shows the feasibility and effectiveness of the proposed method.Presentation Date: Wednesday, October 17, 2018Start Time: 1:50:00 PMLocation: 204B (Anaheim Convention Center)Presentation Type: OralKeywords: velocity analysis, machine learning, stackingPermalink: https://doi.org/10.1190/segam2018-2987088.1FiguresReferencesRelatedDetailsCited byAutomatic velocity picking with restricted weighted k-means clustering using prior information16 January 2023 | Frontiers in Earth Science, Vol. 10Intelligent velocity picking and uncertainty analysis based on the Gaussian mixture model14 July 2022 | Acta Geophysica, Vol. 70, No. 6Estimation of anisotropic parameters from semblance picking using dynamic programmingHong Liang, Houzhu (James) Zhang, Dongliang Zhang, Hongwei Liu, and Xu Ji15 August 2022An automatic velocity picking method based on object detectionCe Bian, Weifeng Geng, Ping Yang, Pengyuan Sun, Guiren Xue, and Haikun Lin15 August 2022Automatic migration velocity analysis via deep learningChao Ding and Jianwei Ma7 June 2022 | GEOPHYSICS, Vol. 87, No. 4Seismic velocity modeling in the digital transformation era: a review of the role of machine learning28 September 2021 | Journal of Petroleum Exploration and Production Technology, Vol. 12, No. 1BiInNet: Bilateral Inversion Network for Real-Time Velocity AnalysisIEEE Transactions on Geoscience and Remote Sensing, Vol. 60Automatic Velocity Picking Using a Multi-Information Fusion Deep Semantic Segmentation NetworkIEEE Transactions on Geoscience and Remote Sensing, Vol. 60A Velocity Spectrum Picking Method Based on Detection Fine Tuning Depth Recognition TechnologyAutomatic Velocity Analysis Using a Hybrid Regression Approach With Convolutional Neural NetworksIEEE Transactions on Geoscience and Remote Sensing, Vol. 59, No. 5Automatic velocity picking from semblances with a new deep-learning regression strategy: Comparison with a classification approachWenlong Wang, George A. McMechan, Jianwei Ma, and Fei Xie5 February 2021 | GEOPHYSICS, Vol. 86, No. 2Automate seismic velocity model building through machine learningJiangchuan Huang, Jun Cao, Guang Chen, and Yu Zhang30 September 2020Estimating normal moveout velocity using the recurrent neural networkReetam Biswas, Anthony Vassiliou, Rodney Stromberg, and Mrinal K. Sen20 September 2019 | Interpretation, Vol. 7, No. 4Deep learning guiding first-arrival traveltime tomographyZiang Li, Xiaofeng Jia, and Jie Zhang10 August 2019Automatic velocity picking based on deep learningHao Zhang, Peimin Zhu, Yuan Gu, and Xiaozhang Li10 August 2019 SEG Technical Program Expanded Abstracts 2018ISSN (print):1052-3812 ISSN (online):1949-4645Copyright: 2018 Pages: 5520 publication data© 2018 Published in electronic format with permission by the Society of Exploration GeophysicistsPublisher:Society of Exploration Geophysicists HistoryPublished Online: 27 Aug 2018 CITATION INFORMATION Yue Ma, Xu Ji, Tong W. Fei, and Yi Luo, (2018), "Automatic velocity picking with convolutional neural networks," SEG Technical Program Expanded Abstracts : 2066-2070. https://doi.org/10.1190/segam2018-2987088.1 Plain-Language Summary Keywordsvelocity analysismachine learningstackingPDF DownloadLoading ...
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
wtdd发布了新的文献求助20
1秒前
舞拽拽完成签到 ,获得积分10
2秒前
3秒前
小吴同学发布了新的文献求助10
3秒前
4秒前
zho发布了新的文献求助10
4秒前
4秒前
accept发布了新的文献求助10
5秒前
天真夏山发布了新的文献求助10
5秒前
魁梧的海秋完成签到,获得积分10
6秒前
6秒前
6秒前
6秒前
6秒前
Lucas应助可言采纳,获得10
8秒前
8秒前
香蕉觅云应助djbj2022采纳,获得10
8秒前
科研通AI5应助dodo采纳,获得10
9秒前
搜集达人应助hu采纳,获得10
10秒前
香蕉觅云应助sad采纳,获得10
10秒前
11秒前
奶姜发布了新的文献求助10
12秒前
三时寒发布了新的文献求助10
12秒前
陈陈快点去读书完成签到,获得积分10
12秒前
乐乐应助淳于无施采纳,获得100
12秒前
Clark发布了新的文献求助30
12秒前
隐形曼青应助Carlos采纳,获得10
14秒前
14秒前
小蘑菇应助wtdd采纳,获得10
14秒前
annnnn完成签到,获得积分10
14秒前
14秒前
乐乐应助天真夏山采纳,获得10
15秒前
陈道哥发布了新的文献求助20
15秒前
无畏阿玲发布了新的文献求助10
16秒前
18秒前
清泽有鱼发布了新的文献求助10
18秒前
wanci应助annnnn采纳,获得10
19秒前
烟花应助安静的龙猫采纳,获得10
19秒前
SHzheng完成签到,获得积分10
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Comprehensive Computational Chemistry 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3553933
求助须知:如何正确求助?哪些是违规求助? 3129728
关于积分的说明 9384042
捐赠科研通 2828848
什么是DOI,文献DOI怎么找? 1555246
邀请新用户注册赠送积分活动 725940
科研通“疑难数据库(出版商)”最低求助积分说明 715331