Automatic velocity picking with convolutional neural networks

计算机科学 卷积神经网络 预处理器 人工智能 中心(范畴论) 数据预处理 介绍(产科) 算法 机器学习 数据挖掘 模式识别(心理学) 结晶学 医学 放射科 化学
作者
Yue Ma,Xu Ji,Tong W. Fei,Yi Luo
标识
DOI:10.1190/segam2018-2987088.1
摘要

PreviousNext No AccessSEG Technical Program Expanded Abstracts 2018Automatic velocity picking with convolutional neural networksAuthors: Yue MaXu JiTong W. FeiYi LuoYue MaAramco Research Center – Beijing, Aramco AsiaSearch for more papers by this author, Xu JiEXPEC Advanced Research Center, Saudi AramcoSearch for more papers by this author, Tong W. FeiEXPEC Advanced Research Center, Saudi AramcoSearch for more papers by this author, and Yi LuoEXPEC Advanced Research Center, Saudi AramcoSearch for more papers by this authorhttps://doi.org/10.1190/segam2018-2987088.1 SectionsSupplemental MaterialAboutPDF/ePub ToolsAdd to favoritesDownload CitationsTrack CitationsPermissions ShareFacebookTwitterLinked InRedditEmail AbstractWe developed an automatic velocity picking methodology based on convolutional neural networks (ConvNets). The proposed method formalizes the picking problem into a ConvNet regression model to map the NMO-corrected seismic gather to the velocity error estimates. We also propose a data preprocessing technique to normalize the shallow and deep reflections of a CMP gather into the same moveout shape, which is a key ingredient for successful training. A synthetic example shows the feasibility and effectiveness of the proposed method.Presentation Date: Wednesday, October 17, 2018Start Time: 1:50:00 PMLocation: 204B (Anaheim Convention Center)Presentation Type: OralKeywords: velocity analysis, machine learning, stackingPermalink: https://doi.org/10.1190/segam2018-2987088.1FiguresReferencesRelatedDetailsCited byAutomatic velocity picking with restricted weighted k-means clustering using prior information16 January 2023 | Frontiers in Earth Science, Vol. 10Intelligent velocity picking and uncertainty analysis based on the Gaussian mixture model14 July 2022 | Acta Geophysica, Vol. 70, No. 6Estimation of anisotropic parameters from semblance picking using dynamic programmingHong Liang, Houzhu (James) Zhang, Dongliang Zhang, Hongwei Liu, and Xu Ji15 August 2022An automatic velocity picking method based on object detectionCe Bian, Weifeng Geng, Ping Yang, Pengyuan Sun, Guiren Xue, and Haikun Lin15 August 2022Automatic migration velocity analysis via deep learningChao Ding and Jianwei Ma7 June 2022 | GEOPHYSICS, Vol. 87, No. 4Seismic velocity modeling in the digital transformation era: a review of the role of machine learning28 September 2021 | Journal of Petroleum Exploration and Production Technology, Vol. 12, No. 1BiInNet: Bilateral Inversion Network for Real-Time Velocity AnalysisIEEE Transactions on Geoscience and Remote Sensing, Vol. 60Automatic Velocity Picking Using a Multi-Information Fusion Deep Semantic Segmentation NetworkIEEE Transactions on Geoscience and Remote Sensing, Vol. 60A Velocity Spectrum Picking Method Based on Detection Fine Tuning Depth Recognition TechnologyAutomatic Velocity Analysis Using a Hybrid Regression Approach With Convolutional Neural NetworksIEEE Transactions on Geoscience and Remote Sensing, Vol. 59, No. 5Automatic velocity picking from semblances with a new deep-learning regression strategy: Comparison with a classification approachWenlong Wang, George A. McMechan, Jianwei Ma, and Fei Xie5 February 2021 | GEOPHYSICS, Vol. 86, No. 2Automate seismic velocity model building through machine learningJiangchuan Huang, Jun Cao, Guang Chen, and Yu Zhang30 September 2020Estimating normal moveout velocity using the recurrent neural networkReetam Biswas, Anthony Vassiliou, Rodney Stromberg, and Mrinal K. Sen20 September 2019 | Interpretation, Vol. 7, No. 4Deep learning guiding first-arrival traveltime tomographyZiang Li, Xiaofeng Jia, and Jie Zhang10 August 2019Automatic velocity picking based on deep learningHao Zhang, Peimin Zhu, Yuan Gu, and Xiaozhang Li10 August 2019 SEG Technical Program Expanded Abstracts 2018ISSN (print):1052-3812 ISSN (online):1949-4645Copyright: 2018 Pages: 5520 publication data© 2018 Published in electronic format with permission by the Society of Exploration GeophysicistsPublisher:Society of Exploration Geophysicists HistoryPublished Online: 27 Aug 2018 CITATION INFORMATION Yue Ma, Xu Ji, Tong W. Fei, and Yi Luo, (2018), "Automatic velocity picking with convolutional neural networks," SEG Technical Program Expanded Abstracts : 2066-2070. https://doi.org/10.1190/segam2018-2987088.1 Plain-Language Summary Keywordsvelocity analysismachine learningstackingPDF DownloadLoading ...
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
勤恳的书文完成签到 ,获得积分10
刚刚
madison完成签到,获得积分10
1秒前
3秒前
棒棒完成签到 ,获得积分10
4秒前
loga80完成签到,获得积分0
5秒前
Joanna完成签到,获得积分10
6秒前
6秒前
pwang_lixin完成签到,获得积分10
8秒前
杂菜流完成签到,获得积分10
8秒前
莫言发布了新的文献求助30
9秒前
烟雨完成签到,获得积分10
9秒前
白枫完成签到 ,获得积分10
10秒前
zhoull完成签到,获得积分20
11秒前
江雁完成签到,获得积分10
11秒前
韭黄发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助10
13秒前
魔幻的妖丽完成签到 ,获得积分10
14秒前
谦让汝燕完成签到,获得积分10
14秒前
青衫完成签到 ,获得积分10
15秒前
NING完成签到 ,获得积分10
15秒前
Lucas应助夜色萨尔图采纳,获得10
15秒前
zhoull发布了新的文献求助10
15秒前
17秒前
pwang_ecust完成签到,获得积分10
18秒前
kourosz完成签到,获得积分10
19秒前
希望天下0贩的0应助韭黄采纳,获得10
19秒前
Jackie完成签到 ,获得积分10
21秒前
21秒前
三木完成签到 ,获得积分10
21秒前
22秒前
薄荷味完成签到 ,获得积分10
22秒前
23秒前
sen123完成签到,获得积分10
23秒前
米糖安完成签到,获得积分10
28秒前
小树完成签到 ,获得积分10
29秒前
29秒前
子春完成签到 ,获得积分10
29秒前
anders完成签到 ,获得积分10
32秒前
天水张家辉完成签到,获得积分10
33秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953529
求助须知:如何正确求助?哪些是违规求助? 3498988
关于积分的说明 11093633
捐赠科研通 3229626
什么是DOI,文献DOI怎么找? 1785674
邀请新用户注册赠送积分活动 869464
科研通“疑难数据库(出版商)”最低求助积分说明 801470