Automatic velocity picking with convolutional neural networks

计算机科学 卷积神经网络 预处理器 人工智能 中心(范畴论) 数据预处理 介绍(产科) 算法 机器学习 数据挖掘 模式识别(心理学) 结晶学 医学 放射科 化学
作者
Yue Ma,Xu Ji,Tong W. Fei,Yi Luo
标识
DOI:10.1190/segam2018-2987088.1
摘要

PreviousNext No AccessSEG Technical Program Expanded Abstracts 2018Automatic velocity picking with convolutional neural networksAuthors: Yue MaXu JiTong W. FeiYi LuoYue MaAramco Research Center – Beijing, Aramco AsiaSearch for more papers by this author, Xu JiEXPEC Advanced Research Center, Saudi AramcoSearch for more papers by this author, Tong W. FeiEXPEC Advanced Research Center, Saudi AramcoSearch for more papers by this author, and Yi LuoEXPEC Advanced Research Center, Saudi AramcoSearch for more papers by this authorhttps://doi.org/10.1190/segam2018-2987088.1 SectionsSupplemental MaterialAboutPDF/ePub ToolsAdd to favoritesDownload CitationsTrack CitationsPermissions ShareFacebookTwitterLinked InRedditEmail AbstractWe developed an automatic velocity picking methodology based on convolutional neural networks (ConvNets). The proposed method formalizes the picking problem into a ConvNet regression model to map the NMO-corrected seismic gather to the velocity error estimates. We also propose a data preprocessing technique to normalize the shallow and deep reflections of a CMP gather into the same moveout shape, which is a key ingredient for successful training. A synthetic example shows the feasibility and effectiveness of the proposed method.Presentation Date: Wednesday, October 17, 2018Start Time: 1:50:00 PMLocation: 204B (Anaheim Convention Center)Presentation Type: OralKeywords: velocity analysis, machine learning, stackingPermalink: https://doi.org/10.1190/segam2018-2987088.1FiguresReferencesRelatedDetailsCited byAutomatic velocity picking with restricted weighted k-means clustering using prior information16 January 2023 | Frontiers in Earth Science, Vol. 10Intelligent velocity picking and uncertainty analysis based on the Gaussian mixture model14 July 2022 | Acta Geophysica, Vol. 70, No. 6Estimation of anisotropic parameters from semblance picking using dynamic programmingHong Liang, Houzhu (James) Zhang, Dongliang Zhang, Hongwei Liu, and Xu Ji15 August 2022An automatic velocity picking method based on object detectionCe Bian, Weifeng Geng, Ping Yang, Pengyuan Sun, Guiren Xue, and Haikun Lin15 August 2022Automatic migration velocity analysis via deep learningChao Ding and Jianwei Ma7 June 2022 | GEOPHYSICS, Vol. 87, No. 4Seismic velocity modeling in the digital transformation era: a review of the role of machine learning28 September 2021 | Journal of Petroleum Exploration and Production Technology, Vol. 12, No. 1BiInNet: Bilateral Inversion Network for Real-Time Velocity AnalysisIEEE Transactions on Geoscience and Remote Sensing, Vol. 60Automatic Velocity Picking Using a Multi-Information Fusion Deep Semantic Segmentation NetworkIEEE Transactions on Geoscience and Remote Sensing, Vol. 60A Velocity Spectrum Picking Method Based on Detection Fine Tuning Depth Recognition TechnologyAutomatic Velocity Analysis Using a Hybrid Regression Approach With Convolutional Neural NetworksIEEE Transactions on Geoscience and Remote Sensing, Vol. 59, No. 5Automatic velocity picking from semblances with a new deep-learning regression strategy: Comparison with a classification approachWenlong Wang, George A. McMechan, Jianwei Ma, and Fei Xie5 February 2021 | GEOPHYSICS, Vol. 86, No. 2Automate seismic velocity model building through machine learningJiangchuan Huang, Jun Cao, Guang Chen, and Yu Zhang30 September 2020Estimating normal moveout velocity using the recurrent neural networkReetam Biswas, Anthony Vassiliou, Rodney Stromberg, and Mrinal K. Sen20 September 2019 | Interpretation, Vol. 7, No. 4Deep learning guiding first-arrival traveltime tomographyZiang Li, Xiaofeng Jia, and Jie Zhang10 August 2019Automatic velocity picking based on deep learningHao Zhang, Peimin Zhu, Yuan Gu, and Xiaozhang Li10 August 2019 SEG Technical Program Expanded Abstracts 2018ISSN (print):1052-3812 ISSN (online):1949-4645Copyright: 2018 Pages: 5520 publication data© 2018 Published in electronic format with permission by the Society of Exploration GeophysicistsPublisher:Society of Exploration Geophysicists HistoryPublished Online: 27 Aug 2018 CITATION INFORMATION Yue Ma, Xu Ji, Tong W. Fei, and Yi Luo, (2018), "Automatic velocity picking with convolutional neural networks," SEG Technical Program Expanded Abstracts : 2066-2070. https://doi.org/10.1190/segam2018-2987088.1 Plain-Language Summary Keywordsvelocity analysismachine learningstackingPDF DownloadLoading ...
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
机灵瑛发布了新的文献求助10
1秒前
2秒前
2秒前
punker发布了新的文献求助10
2秒前
现代子默完成签到,获得积分10
3秒前
脑洞疼应助懒癌晚期采纳,获得10
3秒前
lx发布了新的文献求助30
3秒前
桐桐应助11采纳,获得10
4秒前
陈旧完成签到,获得积分10
4秒前
5秒前
5秒前
Cherrypenny发布了新的文献求助10
5秒前
5秒前
解雨洁发布了新的文献求助10
5秒前
punker完成签到,获得积分10
7秒前
8秒前
9秒前
现代子默发布了新的文献求助10
9秒前
9秒前
10秒前
刘超D发布了新的文献求助10
11秒前
石武完成签到,获得积分10
11秒前
12秒前
gaozzz完成签到 ,获得积分10
12秒前
2897402853发布了新的文献求助10
12秒前
12秒前
浮游应助自然水桃采纳,获得10
13秒前
14秒前
张迪发布了新的文献求助10
14秒前
小巧的洋葱完成签到 ,获得积分10
15秒前
懒癌晚期发布了新的文献求助10
15秒前
炙热的雪糕完成签到,获得积分10
16秒前
马路发布了新的文献求助10
16秒前
17秒前
18秒前
11发布了新的文献求助10
18秒前
科研通AI6应助禹映安采纳,获得10
18秒前
量子星尘发布了新的文献求助10
18秒前
18秒前
2897402853完成签到,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4991009
求助须知:如何正确求助?哪些是违规求助? 4239693
关于积分的说明 13207849
捐赠科研通 4034437
什么是DOI,文献DOI怎么找? 2207277
邀请新用户注册赠送积分活动 1218320
关于科研通互助平台的介绍 1136669