Superstrong Noncovalent Interface between Melamine and Graphene Oxide

非共价相互作用 三聚氰胺 石墨烯 接口(物质) 氢键 材料科学 分子 氧化物 纳米技术 化学 复合材料 有机化学 毛细管数 毛细管作用 冶金
作者
Jun Xia,YinBo Zhu,ZeZhou He,Feng-Chao Wang,HengAn Wu
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:11 (18): 17068-17078 被引量:25
标识
DOI:10.1021/acsami.9b02971
摘要

There have been growing academic interests in the study of strong organic molecule-graphene [or graphene oxide (GO)] systems, owing to their essential noncovalent nature and the consequent chemomechanical behavior within the interface. A more recent experimental measurement [ Chem 2018, 4, 896-910] reported that the melamine-GO interface exhibits a remarkable noncovalent binding strength up to ∼1 nN, even comparable with typical covalent bonds. But the poor understanding on the complex noncovalent nature in particular makes it challenging to unveil the mystery of this high-performance interface. Herein, we carry out first-principles calculations to investigate the atomistic origin of ultrastrong noncovalent interaction between the melamine molecule and the GO sheet, as well as the chemomechanical synergy in interfacial behavior. The anomalous O-H···N hydrogen bonding, formed between the triazine moiety of melamine and the -OH in GO, is found cooperatively enhanced by the pin-like NH2-π interaction, which is responsible for the strong interface. Following static pulling simulations validates the 1 nN level rupture strength and the contribution of each noncovalent interaction within the interface. Moreover, our results show that the -OH hydrogen bonding will mainly augment the interfacial adhesion strength, whereas the -NH2 group cooperating with the -OH hydrogen bonding and conjugating with the GO surface will greatly improve the interfacial shear performance. Our work deepens the understanding on the chemomechanical behaviors within the noncovalent interface, which is expected to provide new potential strategies in designing high-performance graphene-based artificial nacreous materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
宽宽发布了新的文献求助10
2秒前
科研通AI2S应助云出采纳,获得10
3秒前
5秒前
啦啦啦完成签到,获得积分10
5秒前
科研通AI2S应助FIN采纳,获得50
6秒前
36456657应助cleverpeach采纳,获得10
6秒前
宽宽完成签到,获得积分10
7秒前
CipherSage应助sssshhhaa采纳,获得10
8秒前
girl发布了新的文献求助10
10秒前
12秒前
wwz应助林的就行采纳,获得10
13秒前
随大溜发布了新的文献求助30
14秒前
15秒前
飞飞鱼发布了新的文献求助10
17秒前
17秒前
19秒前
20秒前
mount发布了新的文献求助10
21秒前
21秒前
健身boy完成签到,获得积分10
22秒前
22秒前
yqcsysu完成签到 ,获得积分10
22秒前
23秒前
坚定莫茗完成签到,获得积分10
23秒前
23秒前
sssshhhaa发布了新的文献求助10
23秒前
图图完成签到 ,获得积分10
24秒前
大胆的渊思完成签到 ,获得积分10
26秒前
26秒前
CipherSage应助谨慎跳跳糖采纳,获得10
26秒前
not_lost发布了新的文献求助10
27秒前
28秒前
22鱼发布了新的文献求助30
28秒前
无痕发布了新的文献求助10
28秒前
29秒前
sssshhhaa完成签到,获得积分10
30秒前
31秒前
DW发布了新的文献求助10
31秒前
明亮的幻竹给DD的求助进行了留言
31秒前
mount完成签到,获得积分10
31秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Heteroatom-Doped Carbon Allotropes: Progress in Synthesis, Characterization, and Applications 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3159874
求助须知:如何正确求助?哪些是违规求助? 2810842
关于积分的说明 7889629
捐赠科研通 2469910
什么是DOI,文献DOI怎么找? 1315243
科研通“疑难数据库(出版商)”最低求助积分说明 630742
版权声明 602012