Superstrong Noncovalent Interface between Melamine and Graphene Oxide

非共价相互作用 三聚氰胺 石墨烯 接口(物质) 氢键 材料科学 分子 氧化物 纳米技术 化学 复合材料 有机化学 毛细管数 毛细管作用 冶金
作者
Jun Xia,YinBo Zhu,ZeZhou He,Feng-Chao Wang,HengAn Wu
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:11 (18): 17068-17078 被引量:26
标识
DOI:10.1021/acsami.9b02971
摘要

There have been growing academic interests in the study of strong organic molecule-graphene [or graphene oxide (GO)] systems, owing to their essential noncovalent nature and the consequent chemomechanical behavior within the interface. A more recent experimental measurement [ Chem 2018, 4, 896-910] reported that the melamine-GO interface exhibits a remarkable noncovalent binding strength up to ∼1 nN, even comparable with typical covalent bonds. But the poor understanding on the complex noncovalent nature in particular makes it challenging to unveil the mystery of this high-performance interface. Herein, we carry out first-principles calculations to investigate the atomistic origin of ultrastrong noncovalent interaction between the melamine molecule and the GO sheet, as well as the chemomechanical synergy in interfacial behavior. The anomalous O-H···N hydrogen bonding, formed between the triazine moiety of melamine and the -OH in GO, is found cooperatively enhanced by the pin-like NH2-π interaction, which is responsible for the strong interface. Following static pulling simulations validates the 1 nN level rupture strength and the contribution of each noncovalent interaction within the interface. Moreover, our results show that the -OH hydrogen bonding will mainly augment the interfacial adhesion strength, whereas the -NH2 group cooperating with the -OH hydrogen bonding and conjugating with the GO surface will greatly improve the interfacial shear performance. Our work deepens the understanding on the chemomechanical behaviors within the noncovalent interface, which is expected to provide new potential strategies in designing high-performance graphene-based artificial nacreous materials.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wuuw发布了新的文献求助20
1秒前
2秒前
呈歌完成签到 ,获得积分10
2秒前
3秒前
3秒前
酸酸发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
4秒前
虚拟的纸鹤完成签到 ,获得积分10
4秒前
万能图书馆应助10711采纳,获得10
5秒前
思源应助guan采纳,获得10
5秒前
5秒前
5秒前
乐观的小鸡完成签到,获得积分10
5秒前
6秒前
慧慧完成签到 ,获得积分10
6秒前
Jasper应助liu采纳,获得10
7秒前
大方岩完成签到,获得积分10
8秒前
岳元满完成签到,获得积分20
8秒前
超超发布了新的文献求助10
8秒前
廖喜林发布了新的文献求助10
8秒前
vvA11完成签到,获得积分10
9秒前
9秒前
9秒前
浅风完成签到,获得积分10
10秒前
TANG发布了新的文献求助20
10秒前
呆一起发布了新的文献求助10
11秒前
vvA11发布了新的文献求助10
11秒前
桔梗发布了新的文献求助10
11秒前
李健应助hubery采纳,获得10
13秒前
handsome发布了新的文献求助10
13秒前
爱意发布了新的文献求助10
14秒前
14秒前
威武白桃完成签到,获得积分10
15秒前
充电宝应助超超采纳,获得10
15秒前
16秒前
小明应助彩色的若南采纳,获得10
17秒前
李健的小迷弟应助岳元满采纳,获得10
18秒前
18秒前
lifang发布了新的文献求助10
19秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642103
求助须知:如何正确求助?哪些是违规求助? 4758150
关于积分的说明 15016411
捐赠科研通 4800600
什么是DOI,文献DOI怎么找? 2566140
邀请新用户注册赠送积分活动 1524244
关于科研通互助平台的介绍 1483901