蛋白质精氨酸甲基转移酶5
三阴性乳腺癌
癌症研究
乳腺癌
精氨酸
癌症
靶向治疗
组蛋白甲基转移酶
甲基转移酶
生物
医学
甲基化
内科学
生物化学
基因
氨基酸
作者
Mathilde Vinet,Samyuktha Suresh,Virginie Maire,Clarisse Monchecourt,Fariba Némati,Laëtitia Lesage,Fabienne Pierre,Mengliang Ye,Auriane Lescure,Amélie Brisson,Didier Meseure,Nicolás André,Guillem Rigaill,Elisabetta Marangoni,Elaine Del Nery,Sergio Román-Román,Thierry Dubois
摘要
Abstract TNBC is a highly heterogeneous and aggressive breast cancer subtype associated with high relapse rates, and for which no targeted therapy yet exists. Protein arginine methyltransferase 5 (PRMT5), an enzyme which catalyzes the methylation of arginines on histone and non‐histone proteins, has recently emerged as a putative target for cancer therapy. Potent and specific PRMT5 inhibitors have been developed, but the therapeutic efficacy of PRMT5 targeting in TNBC has not yet been demonstrated. Here, we examine the expression of PRMT5 in a human breast cancer cohort obtained from the Institut Curie, and evaluate the therapeutic potential of pharmacological inhibition of PRMT5 in TNBC. We find that PRMT5 mRNA and protein are expressed at comparable levels in TNBC, luminal breast tumors, and healthy mammary tissues. However, immunohistochemistry analyses reveal that PRMT5 is differentially localized in TNBC compared to other breast cancer subtypes and to normal breast tissues. PRMT5 is heterogeneously expressed in TNBC and high PRMT5 expression correlates with poor prognosis within this breast cancer subtype. Using the small‐molecule inhibitor EPZ015666, we show that PRMT5 inhibition impairs cell proliferation in a subset of TNBC cell lines. PRMT5 inhibition triggers apoptosis, regulates cell cycle progression and decreases mammosphere formation. Furthermore, EPZ015666 administration to a patient‐derived xenograft model of TNBC significantly deters tumor progression. Finally, we reveal potentiation between EGFR and PRMT5 targeting, suggestive of a beneficial combination therapy. Our findings highlight a distinctive subcellular localization of PRMT5 in TNBC, and uphold PRMT5 targeting, alone or in combination, as a relevant treatment strategy for a subset of TNBC.
科研通智能强力驱动
Strongly Powered by AbleSci AI