Precision animal feed formulation: An evolutionary multi-objective approach

数学优化 集合(抽象数据类型) 过程(计算) 人口 进化算法 计算机科学 非线性系统 数学 物理 人口学 量子力学 社会学 程序设计语言 操作系统
作者
Daniel Dooyum Uyeh,Trinadh Pamulapati,Rammohan Mallipeddi,Tusan Park,Senorpe Asem-Hiablie,Seungmin Woo,Junhee Kim,Yeongsu Kim,Yushin Ha
出处
期刊:Animal Feed Science and Technology [Elsevier]
卷期号:256: 114211-114211 被引量:18
标识
DOI:10.1016/j.anifeedsci.2019.114211
摘要

Abstract Most livestock producers aim for optimal ways of feeding their animals. Conventional algorithms approach optimum feed formulation by minimizing feed costs while satisfying constraints related to nutritional requirements of the animal. The optimization process needs to be performed every time a nutritional requirement is changed due to the nonlinear relationship between the relaxation of the different nutritional requirements and the feed cost. Consequently, decision-making becomes a time-consuming trial and error process. In addition, the nonlinear relationship changes depending on the type of materials used, their nutritional compositions and costs as well as the animal’s nutritional requirements. Therefore, in this work, we formulated a multi-objective feed formulation problem comprising of two objects – a) minimizing feed cost and b) minimizing deviation from the specified requirements. The problem is solved using a population-based evolutionary multi-objective optimization algorithm (NSGA-II) that results in an optimal set of comprised solutions in a single run. The availability of the entire set of comprised solutions facilitates the understanding of the relationship between different nutritional requirements and cost, thus leading to a more efficient decision-making process. We demonstrated the applicability of the proposed method by performing experimental simulations on several cases of dairy and beef cattle feed formulation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
生动面包完成签到,获得积分10
1秒前
1秒前
rtx00发布了新的文献求助10
2秒前
李健应助tabor采纳,获得10
2秒前
2秒前
Sally完成签到,获得积分10
2秒前
2秒前
3秒前
boyudud完成签到,获得积分10
3秒前
Sirila发布了新的文献求助10
3秒前
强健的绮琴完成签到,获得积分10
3秒前
5秒前
5秒前
今后应助啵啵采纳,获得10
5秒前
幽默妙柏发布了新的文献求助10
6秒前
2333发布了新的文献求助20
6秒前
科研小白发布了新的文献求助10
6秒前
6秒前
6秒前
TL发布了新的文献求助10
7秒前
孤独的帅着完成签到,获得积分20
8秒前
8秒前
花城发布了新的文献求助10
8秒前
湜迩完成签到,获得积分10
8秒前
9秒前
阿炜发布了新的文献求助10
9秒前
博弈春秋应助ZHIXIANGWENG采纳,获得10
9秒前
zzzq应助ZHIXIANGWENG采纳,获得10
9秒前
SYLH应助ZHIXIANGWENG采纳,获得10
9秒前
9秒前
韩豆豆发布了新的文献求助10
10秒前
leafarc发布了新的文献求助10
10秒前
在水一方应助幽默妙柏采纳,获得10
10秒前
司马惜儿完成签到,获得积分10
11秒前
张祖伦发布了新的文献求助10
11秒前
12秒前
tabor发布了新的文献求助10
12秒前
科研通AI5应助森sen采纳,获得10
13秒前
theThreeMagi完成签到,获得积分10
13秒前
司马惜儿发布了新的文献求助30
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Green Analytical Methods and Miniaturized Sample Preparation techniques for Forensic Drug Analysis 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3561145
求助须知:如何正确求助?哪些是违规求助? 3134912
关于积分的说明 9410275
捐赠科研通 2835309
什么是DOI,文献DOI怎么找? 1558420
邀请新用户注册赠送积分活动 728160
科研通“疑难数据库(出版商)”最低求助积分说明 716722