Precision animal feed formulation: An evolutionary multi-objective approach

数学优化 集合(抽象数据类型) 过程(计算) 人口 进化算法 计算机科学 非线性系统 数学 物理 人口学 量子力学 社会学 程序设计语言 操作系统
作者
Daniel Dooyum Uyeh,Trinadh Pamulapati,Rammohan Mallipeddi,Tusan Park,Senorpe Asem-Hiablie,Seungmin Woo,Junhee Kim,Yeongsu Kim,Yushin Ha
出处
期刊:Animal Feed Science and Technology [Elsevier BV]
卷期号:256: 114211-114211 被引量:20
标识
DOI:10.1016/j.anifeedsci.2019.114211
摘要

Abstract Most livestock producers aim for optimal ways of feeding their animals. Conventional algorithms approach optimum feed formulation by minimizing feed costs while satisfying constraints related to nutritional requirements of the animal. The optimization process needs to be performed every time a nutritional requirement is changed due to the nonlinear relationship between the relaxation of the different nutritional requirements and the feed cost. Consequently, decision-making becomes a time-consuming trial and error process. In addition, the nonlinear relationship changes depending on the type of materials used, their nutritional compositions and costs as well as the animal’s nutritional requirements. Therefore, in this work, we formulated a multi-objective feed formulation problem comprising of two objects – a) minimizing feed cost and b) minimizing deviation from the specified requirements. The problem is solved using a population-based evolutionary multi-objective optimization algorithm (NSGA-II) that results in an optimal set of comprised solutions in a single run. The availability of the entire set of comprised solutions facilitates the understanding of the relationship between different nutritional requirements and cost, thus leading to a more efficient decision-making process. We demonstrated the applicability of the proposed method by performing experimental simulations on several cases of dairy and beef cattle feed formulation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助Persist采纳,获得10
刚刚
吃点红糖馒头完成签到,获得积分10
刚刚
WILL发布了新的文献求助10
刚刚
CipherSage应助wyr采纳,获得10
1秒前
zwy应助ergrsbf采纳,获得20
2秒前
arong完成签到,获得积分0
2秒前
虚心谷梦完成签到,获得积分10
2秒前
2秒前
1111完成签到,获得积分10
2秒前
科目三应助萧萧采纳,获得20
3秒前
3秒前
次次发布了新的文献求助10
3秒前
4秒前
orixero应助galioo3000采纳,获得10
4秒前
牛小牛发布了新的文献求助10
5秒前
Emma应助kiyo_v采纳,获得10
5秒前
5秒前
FashionBoy应助黑黑黑采纳,获得10
5秒前
Zhaojiaokeyan关注了科研通微信公众号
5秒前
gfi完成签到,获得积分10
6秒前
6秒前
眼睛大的问丝关注了科研通微信公众号
6秒前
123完成签到,获得积分20
6秒前
明亮的冷雪完成签到,获得积分10
6秒前
风趣的老太应助哈哈哈采纳,获得10
6秒前
陈文学发布了新的文献求助10
7秒前
彭于晏应助小王吧采纳,获得10
7秒前
7秒前
啊啊啊完成签到,获得积分10
7秒前
8秒前
ye完成签到,获得积分10
8秒前
Zzzz完成签到,获得积分20
9秒前
陆吉完成签到,获得积分10
9秒前
芷莯发布了新的文献求助10
9秒前
xy发布了新的文献求助10
9秒前
9秒前
123发布了新的文献求助10
10秒前
10秒前
Ftplanet发布了新的文献求助10
10秒前
10秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Effective Learning and Mental Wellbeing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3974779
求助须知:如何正确求助?哪些是违规求助? 3519193
关于积分的说明 11197417
捐赠科研通 3255311
什么是DOI,文献DOI怎么找? 1797760
邀请新用户注册赠送积分活动 877150
科研通“疑难数据库(出版商)”最低求助积分说明 806187