Precision animal feed formulation: An evolutionary multi-objective approach

数学优化 集合(抽象数据类型) 过程(计算) 人口 进化算法 计算机科学 非线性系统 数学 物理 人口学 量子力学 社会学 程序设计语言 操作系统
作者
Daniel Dooyum Uyeh,Trinadh Pamulapati,Rammohan Mallipeddi,Tusan Park,Senorpe Asem-Hiablie,Seungmin Woo,Junhee Kim,Yeongsu Kim,Yushin Ha
出处
期刊:Animal Feed Science and Technology [Elsevier BV]
卷期号:256: 114211-114211 被引量:20
标识
DOI:10.1016/j.anifeedsci.2019.114211
摘要

Abstract Most livestock producers aim for optimal ways of feeding their animals. Conventional algorithms approach optimum feed formulation by minimizing feed costs while satisfying constraints related to nutritional requirements of the animal. The optimization process needs to be performed every time a nutritional requirement is changed due to the nonlinear relationship between the relaxation of the different nutritional requirements and the feed cost. Consequently, decision-making becomes a time-consuming trial and error process. In addition, the nonlinear relationship changes depending on the type of materials used, their nutritional compositions and costs as well as the animal’s nutritional requirements. Therefore, in this work, we formulated a multi-objective feed formulation problem comprising of two objects – a) minimizing feed cost and b) minimizing deviation from the specified requirements. The problem is solved using a population-based evolutionary multi-objective optimization algorithm (NSGA-II) that results in an optimal set of comprised solutions in a single run. The availability of the entire set of comprised solutions facilitates the understanding of the relationship between different nutritional requirements and cost, thus leading to a more efficient decision-making process. We demonstrated the applicability of the proposed method by performing experimental simulations on several cases of dairy and beef cattle feed formulation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
lin关注了科研通微信公众号
1秒前
2秒前
兴奋小丸子完成签到,获得积分10
3秒前
4秒前
5秒前
5秒前
keyanxiaobai完成签到,获得积分10
6秒前
二十二点36完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
7秒前
英勇星月完成签到 ,获得积分10
10秒前
zgt01发布了新的文献求助10
10秒前
新德里梅塔洛1号完成签到,获得积分20
13秒前
16秒前
wp完成签到,获得积分10
21秒前
splemeth完成签到,获得积分10
21秒前
雪白的紫翠完成签到 ,获得积分10
22秒前
哈哈完成签到,获得积分10
23秒前
淡定访琴完成签到,获得积分10
25秒前
大力云朵完成签到,获得积分10
27秒前
ADcal完成签到 ,获得积分10
27秒前
27秒前
tony完成签到,获得积分10
27秒前
苏苏完成签到,获得积分10
29秒前
WuFen完成签到 ,获得积分10
30秒前
淘宝叮咚完成签到,获得积分10
30秒前
高高从云完成签到 ,获得积分10
31秒前
情怀应助唐唐采纳,获得10
32秒前
科研肥料完成签到,获得积分10
33秒前
每天都在找完成签到,获得积分10
33秒前
桐桐应助zzw采纳,获得20
33秒前
33秒前
吕布完成签到,获得积分10
34秒前
34秒前
ChenYifei完成签到,获得积分10
38秒前
qq发布了新的文献求助10
38秒前
Smiley完成签到 ,获得积分10
41秒前
hzauhzau完成签到 ,获得积分10
41秒前
白桃完成签到 ,获得积分10
43秒前
小八统治世界完成签到 ,获得积分10
44秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038184
求助须知:如何正确求助?哪些是违规求助? 3575908
关于积分的说明 11373872
捐赠科研通 3305715
什么是DOI,文献DOI怎么找? 1819255
邀请新用户注册赠送积分活动 892662
科研通“疑难数据库(出版商)”最低求助积分说明 815022