Classification of alveolar bone density using 3-D deep convolutional neural network in the cone-beam CT images: A 6-month clinical study

卷积神经网络 体素 锥束ct 人工智能 计算机科学 特征(语言学) 深度学习 医学影像学 医学诊断 模式识别(心理学) 放射科 医学 计算机断层摄影术 语言学 哲学
作者
Majid Memarian Sorkhabi,Maryam Saadat Khajeh
出处
期刊:Measurement [Elsevier BV]
卷期号:148: 106945-106945 被引量:26
标识
DOI:10.1016/j.measurement.2019.106945
摘要

Computer-based diagnoses are a crucial study in the medical image analyzing and machine learning technologies. The cone beam computed tomography (CBCT) modality provides three-dimensional bone models to extract an interactive treatment plan at relatively low radiation dose and cost. For the first time in this study, the evaluation of alveolar bone density was performed by a 3-D deep convolutional neural network (CNN) at the CBCT images. The trabecular pattern of the bone was recognized and classified. This study aimed to present a methodology which was implementing 3D voxel-wise feature evaluation within a convolutional neural network. We presented a three-dimensional CNN method that evaluated the alveolar bone density from CBCT volumetric data which could efficiently capture the trabecular pattern. In clinical trials, 207 surgery target areas of 83 patients have been selected. Clinical parameters were measured and evaluated during the surgery and a 6-month follow-up. These parameters were used to database labeling and evaluate the performance of the proposed technique. Our method achieved the average precision score of 84.63% and 95.20% in the hexagonal prism and the cylindrical voxel shapes respectively. Furthermore, the alveolar bone classification was performed in 76 ms. In comparison to the state-of-art approaches, the efficiency of the suggested algorithm was proved. An automatic classification can improve the proficiency and certainty of the radiologic evaluation. The outcome of this research may help the dentists in the implant treatment from diagnosis to surgery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jun完成签到 ,获得积分10
刚刚
哈哈哈哈发布了新的文献求助10
1秒前
善学以致用应助handsomeboy采纳,获得50
2秒前
小小发布了新的文献求助10
2秒前
sss完成签到,获得积分10
2秒前
kongshuai完成签到,获得积分20
3秒前
搜集达人应助璇子采纳,获得10
3秒前
llp发布了新的文献求助10
4秒前
zxh完成签到,获得积分10
4秒前
4秒前
4秒前
浮游应助不想起名字采纳,获得10
4秒前
科研通AI5应助xuxingjie采纳,获得10
5秒前
6秒前
todd驳回了Su应助
7秒前
xiaofengyyy完成签到,获得积分10
7秒前
chhe发布了新的文献求助10
7秒前
小丹小丹完成签到 ,获得积分10
7秒前
Lyeming完成签到,获得积分10
9秒前
10秒前
怡然立轩完成签到 ,获得积分10
10秒前
kongshuai发布了新的文献求助30
10秒前
11秒前
浮游应助Unstoppable采纳,获得10
11秒前
烟花应助咔咔咔采纳,获得30
12秒前
SciGPT应助llp采纳,获得30
12秒前
13秒前
好好学习完成签到,获得积分10
14秒前
Tang发布了新的文献求助10
14秒前
16秒前
超帅乐荷发布了新的文献求助30
16秒前
充电宝应助tao采纳,获得10
16秒前
17秒前
18秒前
18秒前
18秒前
生动的小蝴蝶完成签到,获得积分10
19秒前
20秒前
21秒前
瘦瘦摇伽完成签到 ,获得积分10
22秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5125100
求助须知:如何正确求助?哪些是违规求助? 4329107
关于积分的说明 13489886
捐赠科研通 4163829
什么是DOI,文献DOI怎么找? 2282591
邀请新用户注册赠送积分活动 1283707
关于科研通互助平台的介绍 1222983