Classification of alveolar bone density using 3-D deep convolutional neural network in the cone-beam CT images: A 6-month clinical study

卷积神经网络 体素 锥束ct 人工智能 计算机科学 特征(语言学) 深度学习 医学影像学 医学诊断 模式识别(心理学) 放射科 医学 计算机断层摄影术 语言学 哲学
作者
Majid Memarian Sorkhabi,Maryam Saadat Khajeh
出处
期刊:Measurement [Elsevier BV]
卷期号:148: 106945-106945 被引量:26
标识
DOI:10.1016/j.measurement.2019.106945
摘要

Computer-based diagnoses are a crucial study in the medical image analyzing and machine learning technologies. The cone beam computed tomography (CBCT) modality provides three-dimensional bone models to extract an interactive treatment plan at relatively low radiation dose and cost. For the first time in this study, the evaluation of alveolar bone density was performed by a 3-D deep convolutional neural network (CNN) at the CBCT images. The trabecular pattern of the bone was recognized and classified. This study aimed to present a methodology which was implementing 3D voxel-wise feature evaluation within a convolutional neural network. We presented a three-dimensional CNN method that evaluated the alveolar bone density from CBCT volumetric data which could efficiently capture the trabecular pattern. In clinical trials, 207 surgery target areas of 83 patients have been selected. Clinical parameters were measured and evaluated during the surgery and a 6-month follow-up. These parameters were used to database labeling and evaluate the performance of the proposed technique. Our method achieved the average precision score of 84.63% and 95.20% in the hexagonal prism and the cylindrical voxel shapes respectively. Furthermore, the alveolar bone classification was performed in 76 ms. In comparison to the state-of-art approaches, the efficiency of the suggested algorithm was proved. An automatic classification can improve the proficiency and certainty of the radiologic evaluation. The outcome of this research may help the dentists in the implant treatment from diagnosis to surgery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
12完成签到 ,获得积分10
刚刚
斯文败类应助千崧采纳,获得10
1秒前
1秒前
1秒前
1秒前
深情安青应助不安的傲白采纳,获得10
1秒前
脑洞疼应助烨伟采纳,获得10
2秒前
怕黑的班完成签到,获得积分10
2秒前
bkagyin应助梦涵采纳,获得10
2秒前
hsn完成签到,获得积分10
2秒前
小鱼发布了新的文献求助10
3秒前
滕雪嘻嘻嘻嘻嘻完成签到,获得积分10
3秒前
干净海秋发布了新的文献求助10
3秒前
Evelyn完成签到,获得积分10
4秒前
4秒前
4秒前
4秒前
4秒前
烟波钓徒完成签到,获得积分20
5秒前
5秒前
李佳慧发布了新的文献求助30
5秒前
5秒前
追寻冬萱完成签到,获得积分10
6秒前
今天也没睡醒完成签到,获得积分10
6秒前
6秒前
牡丹花下完成签到 ,获得积分10
7秒前
mdalmahadi完成签到,获得积分10
7秒前
微眠完成签到,获得积分10
7秒前
666发布了新的文献求助10
7秒前
Tiffany完成签到 ,获得积分10
8秒前
WANGs发布了新的文献求助10
8秒前
Zoe完成签到,获得积分10
8秒前
爱喝冰咖啡完成签到,获得积分10
8秒前
烟波钓徒发布了新的文献求助10
9秒前
fzzf发布了新的文献求助10
9秒前
9秒前
9秒前
10秒前
Ski完成签到,获得积分20
10秒前
海洋不快乐完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Extreme ultraviolet pellicle cooling by hydrogen gas flow (Conference Presentation) 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5175950
求助须知:如何正确求助?哪些是违规求助? 4364946
关于积分的说明 13589557
捐赠科研通 4214271
什么是DOI,文献DOI怎么找? 2311500
邀请新用户注册赠送积分活动 1310396
关于科研通互助平台的介绍 1258462