Classification of alveolar bone density using 3-D deep convolutional neural network in the cone-beam CT images: A 6-month clinical study

卷积神经网络 体素 锥束ct 人工智能 计算机科学 特征(语言学) 深度学习 医学影像学 医学诊断 模式识别(心理学) 放射科 医学 计算机断层摄影术 语言学 哲学
作者
Majid Memarian Sorkhabi,Maryam Saadat Khajeh
出处
期刊:Measurement [Elsevier]
卷期号:148: 106945-106945 被引量:28
标识
DOI:10.1016/j.measurement.2019.106945
摘要

Computer-based diagnoses are a crucial study in the medical image analyzing and machine learning technologies. The cone beam computed tomography (CBCT) modality provides three-dimensional bone models to extract an interactive treatment plan at relatively low radiation dose and cost. For the first time in this study, the evaluation of alveolar bone density was performed by a 3-D deep convolutional neural network (CNN) at the CBCT images. The trabecular pattern of the bone was recognized and classified. This study aimed to present a methodology which was implementing 3D voxel-wise feature evaluation within a convolutional neural network. We presented a three-dimensional CNN method that evaluated the alveolar bone density from CBCT volumetric data which could efficiently capture the trabecular pattern. In clinical trials, 207 surgery target areas of 83 patients have been selected. Clinical parameters were measured and evaluated during the surgery and a 6-month follow-up. These parameters were used to database labeling and evaluate the performance of the proposed technique. Our method achieved the average precision score of 84.63% and 95.20% in the hexagonal prism and the cylindrical voxel shapes respectively. Furthermore, the alveolar bone classification was performed in 76 ms. In comparison to the state-of-art approaches, the efficiency of the suggested algorithm was proved. An automatic classification can improve the proficiency and certainty of the radiologic evaluation. The outcome of this research may help the dentists in the implant treatment from diagnosis to surgery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
可爱的函函应助reneezong采纳,获得10
刚刚
小二郎应助朴素小刺猬采纳,获得10
刚刚
流萤夜语完成签到,获得积分10
刚刚
zz发布了新的文献求助10
1秒前
Akim应助xiao123采纳,获得10
1秒前
Luckqi6688发布了新的文献求助10
1秒前
雨夜星空完成签到,获得积分10
1秒前
酷波er应助小羊咩咩采纳,获得10
1秒前
。。。发布了新的文献求助10
1秒前
1秒前
2秒前
子沐完成签到,获得积分20
2秒前
3秒前
TT发布了新的文献求助20
3秒前
明小丽完成签到,获得积分10
3秒前
杏仁核完成签到,获得积分10
3秒前
啷个吃不饱完成签到 ,获得积分10
3秒前
搞份炸鸡778完成签到,获得积分10
4秒前
李爱国应助SJ采纳,获得10
4秒前
momomi完成签到,获得积分10
4秒前
Dreamchaser完成签到,获得积分10
4秒前
4秒前
小夏完成签到,获得积分10
4秒前
好好学习的大大莹完成签到,获得积分10
4秒前
5秒前
Sadgenius发布了新的文献求助10
5秒前
番茄酱发布了新的文献求助10
5秒前
LHZ完成签到,获得积分10
5秒前
woshiboer完成签到,获得积分10
6秒前
Shawn完成签到,获得积分10
6秒前
6秒前
yatou完成签到,获得积分10
6秒前
自然幻竹完成签到,获得积分10
6秒前
赘婿应助酷酷的可仁采纳,获得10
6秒前
量子星尘发布了新的文献求助10
6秒前
麦克完成签到,获得积分10
7秒前
TRY发布了新的文献求助10
7秒前
7秒前
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5433250
求助须知:如何正确求助?哪些是违规求助? 4545697
关于积分的说明 14198023
捐赠科研通 4465435
什么是DOI,文献DOI怎么找? 2447552
邀请新用户注册赠送积分活动 1438717
关于科研通互助平台的介绍 1415709