IFCNN: A general image fusion framework based on convolutional neural network

计算机科学 卷积神经网络 图像融合 融合规则 人工智能 图像(数学) 光学(聚焦) 融合 基本事实 计算机视觉 一般化 模式识别(心理学) 数学 语言学 哲学 数学分析 物理 光学
作者
Yu Zhang,Yü Liu,Peng Sun,Yan Han,Xiaolin Zhao,Li Zhang
出处
期刊:Information Fusion [Elsevier]
卷期号:54: 99-118 被引量:922
标识
DOI:10.1016/j.inffus.2019.07.011
摘要

In this paper, we propose a general image fusion framework based on the convolutional neural network, named as IFCNN. Inspired by the transform-domain image fusion algorithms, we firstly utilize two convolutional layers to extract the salient image features from multiple input images. Afterwards, the convolutional features of multiple input images are fused by an appropriate fusion rule (elementwise-max, elementwise-min or elementwise-mean), which is selected according to the type of input images. Finally, the fused features are reconstructed by two convolutional layers to produce the informative fusion image. The proposed model is fully convolutional, so it could be trained in the end-to-end manner without any post-processing procedures. In order to fully train the model, we have generated a large-scale multi-focus image dataset based on the large-scale RGB-D dataset (i.e., NYU-D2), which owns ground-truth fusion images and contains more diverse and larger images than the existing datasets for image fusion. Without finetuning on other types of image datasets, the experimental results show that the proposed model demonstrates better generalization ability than the existing image fusion models for fusing various types of images, such as multi-focus, infrared-visual, multi-modal medical and multi-exposure images. Moreover, the results also verify that our model has achieved comparable or even better results compared to the state-of-the-art image fusion algorithms on four types of image datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Jenny应助追寻夜香采纳,获得10
1秒前
1秒前
xiuxiu_27发布了新的文献求助10
1秒前
万能图书馆应助一一采纳,获得10
1秒前
sweetbearm应助Jiancui采纳,获得10
1秒前
GGG完成签到,获得积分10
2秒前
整齐的泥猴桃完成签到 ,获得积分10
2秒前
3秒前
杜嘟嘟发布了新的文献求助10
3秒前
稚初发布了新的文献求助10
3秒前
3秒前
4秒前
小豆芽儿发布了新的文献求助10
4秒前
4秒前
圣晟胜发布了新的文献求助10
5秒前
你不知道完成签到 ,获得积分10
5秒前
5秒前
6秒前
Ren完成签到,获得积分10
6秒前
侦察兵发布了新的文献求助10
6秒前
烂漫念文完成签到,获得积分10
6秒前
Lam发布了新的文献求助30
6秒前
沙111完成签到,获得积分10
6秒前
7秒前
wanci应助hhh采纳,获得30
8秒前
8秒前
ATAYA发布了新的文献求助10
8秒前
zhenzhen发布了新的文献求助10
9秒前
娜行发布了新的文献求助10
9秒前
科研通AI5应助么系么系采纳,获得10
10秒前
斯文败类应助坚果采纳,获得10
10秒前
qingkong完成签到 ,获得积分10
10秒前
11秒前
11秒前
11秒前
12秒前
yxq完成签到 ,获得积分10
13秒前
franklvlei完成签到,获得积分10
13秒前
共享精神应助yitang采纳,获得10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678