Incipient fault feature extraction of rolling bearings based on the MVMD and Teager energy operator

能量操作员 模式识别(心理学) 能量(信号处理) 断层(地质) 希尔伯特-黄变换 特征提取 振动 人工智能 分割 信号(编程语言) 特征(语言学) 解调 工程类 计算机科学 控制理论(社会学) 算法 数学 声学 统计 物理 语言学 哲学 频道(广播) 控制(管理) 地震学 电气工程 程序设计语言 地质学
作者
Jun Ma,Jiande Wu,Xiaodong Wang
出处
期刊:Isa Transactions [Elsevier]
卷期号:80: 297-311 被引量:81
标识
DOI:10.1016/j.isatra.2018.05.017
摘要

Aiming at the problems that the incipient fault of rolling bearings is difficult to recognize and the number of intrinsic mode functions (IMFs) decomposed by variational mode decomposition (VMD) must be set in advance and can not be adaptively selected, taking full advantages of the adaptive segmentation of scale spectrum and Teager energy operator (TEO) demodulation, a new method for early fault feature extraction of rolling bearings based on the modified VMD and Teager energy operator (MVMD-TEO) is proposed. Firstly, the vibration signal of rolling bearings is analyzed by adaptive scale space spectrum segmentation to obtain the spectrum segmentation support boundary, and then the number K of IMFs decomposed by VMD is adaptively determined. Secondly, the original vibration signal is adaptively decomposed into K IMFs, and the effective IMF components are extracted based on the correlation coefficient criterion. Finally, the Teager energy spectrum of the reconstructed signal of the effective IMF components is calculated by the TEO, and then the early fault features of rolling bearings are extracted to realize the fault identification and location. Comparative experiments of the proposed method and the existing fault feature extraction method based on Local Mean Decomposition and Teager energy operator (LMD-TEO) have been implemented using experimental data-sets and a measured data-set. The results of comparative experiments in three application cases show that the presented method can achieve a fairly or slightly better performance than LMD-TEO method, and the validity and feasibility of the proposed method are proved.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
思源应助hhzz采纳,获得10
刚刚
红红完成签到,获得积分10
3秒前
瑶一瑶发布了新的文献求助10
3秒前
NexusExplorer应助刘鹏宇采纳,获得10
3秒前
roselau完成签到,获得积分10
3秒前
yudandan@CJLU完成签到,获得积分10
4秒前
4秒前
半山完成签到,获得积分10
8秒前
吹泡泡的红豆完成签到 ,获得积分10
9秒前
研友_89eBO8完成签到 ,获得积分10
9秒前
隐形曼青应助ZeJ采纳,获得10
9秒前
9秒前
隐形曼青应助温暖的钻石采纳,获得10
10秒前
Khr1stINK发布了新的文献求助10
11秒前
123cxj发布了新的文献求助10
12秒前
星辰大海应助红红采纳,获得10
12秒前
sweetbearm应助小周采纳,获得10
13秒前
科研通AI5应助赖道之采纳,获得10
13秒前
14秒前
HonamC完成签到,获得积分10
15秒前
十三十四十五完成签到,获得积分10
16秒前
潇洒的问夏完成签到 ,获得积分10
18秒前
无声瀑布完成签到,获得积分10
18秒前
Bingtao_Lian完成签到 ,获得积分10
19秒前
小布丁完成签到 ,获得积分10
19秒前
竹筏过海应助季生采纳,获得30
20秒前
21秒前
buno应助22采纳,获得10
22秒前
赘婿应助TT采纳,获得10
23秒前
23秒前
23秒前
24秒前
Jenny应助赖道之采纳,获得10
26秒前
依古比古完成签到 ,获得积分10
28秒前
汎影发布了新的文献求助10
28秒前
小二完成签到,获得积分10
28秒前
29秒前
31秒前
顾矜应助长情洙采纳,获得10
31秒前
monere发布了新的文献求助30
31秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808