Incipient fault feature extraction of rolling bearings based on the MVMD and Teager energy operator

能量操作员 模式识别(心理学) 能量(信号处理) 断层(地质) 希尔伯特-黄变换 特征提取 振动 人工智能 分割 信号(编程语言) 特征(语言学) 解调 工程类 计算机科学 控制理论(社会学) 算法 数学 声学 统计 物理 地震学 控制(管理) 程序设计语言 语言学 哲学 地质学 频道(广播) 电气工程
作者
Jun Ma,Jiande Wu,Xiaodong Wang
出处
期刊:Isa Transactions [Elsevier]
卷期号:80: 297-311 被引量:81
标识
DOI:10.1016/j.isatra.2018.05.017
摘要

Aiming at the problems that the incipient fault of rolling bearings is difficult to recognize and the number of intrinsic mode functions (IMFs) decomposed by variational mode decomposition (VMD) must be set in advance and can not be adaptively selected, taking full advantages of the adaptive segmentation of scale spectrum and Teager energy operator (TEO) demodulation, a new method for early fault feature extraction of rolling bearings based on the modified VMD and Teager energy operator (MVMD-TEO) is proposed. Firstly, the vibration signal of rolling bearings is analyzed by adaptive scale space spectrum segmentation to obtain the spectrum segmentation support boundary, and then the number K of IMFs decomposed by VMD is adaptively determined. Secondly, the original vibration signal is adaptively decomposed into K IMFs, and the effective IMF components are extracted based on the correlation coefficient criterion. Finally, the Teager energy spectrum of the reconstructed signal of the effective IMF components is calculated by the TEO, and then the early fault features of rolling bearings are extracted to realize the fault identification and location. Comparative experiments of the proposed method and the existing fault feature extraction method based on Local Mean Decomposition and Teager energy operator (LMD-TEO) have been implemented using experimental data-sets and a measured data-set. The results of comparative experiments in three application cases show that the presented method can achieve a fairly or slightly better performance than LMD-TEO method, and the validity and feasibility of the proposed method are proved.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Youth发布了新的文献求助10
刚刚
2秒前
3秒前
5秒前
6秒前
ff不吃芹菜完成签到,获得积分10
7秒前
9秒前
上官若男应助科研通管家采纳,获得10
9秒前
bkagyin应助科研通管家采纳,获得10
9秒前
乐乐应助科研通管家采纳,获得10
9秒前
我是老大应助科研通管家采纳,获得10
9秒前
orixero应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
10秒前
丘比特应助周周采纳,获得10
10秒前
LHD完成签到,获得积分20
11秒前
jade发布了新的文献求助10
11秒前
14秒前
15秒前
CipherSage应助苏满天采纳,获得10
16秒前
lumei661314完成签到,获得积分10
17秒前
深情安青应助Youth采纳,获得10
17秒前
嘻嘻嘻发布了新的文献求助10
18秒前
袁妞妞发布了新的文献求助10
20秒前
包凡之发布了新的文献求助30
21秒前
jade完成签到,获得积分10
22秒前
23秒前
斯文败类应助袁妞妞采纳,获得10
25秒前
27秒前
小李不爱搞科研完成签到,获得积分10
29秒前
33秒前
周周发布了新的文献求助10
33秒前
33秒前
34秒前
35秒前
36秒前
大个应助123采纳,获得10
37秒前
37秒前
fucccboi发布了新的文献求助10
37秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161200
求助须知:如何正确求助?哪些是违规求助? 2812600
关于积分的说明 7895715
捐赠科研通 2471437
什么是DOI,文献DOI怎么找? 1316018
科研通“疑难数据库(出版商)”最低求助积分说明 631074
版权声明 602112