作者
Dong Wang,Xinjie Zhang,Daoxu Qu,Jichun Han,Fanqing Meng,Minglei Xu,Qiusheng Zheng
摘要
The present study used an in vitro model of cold cardioplegia in isolated working rat hearts to evaluate the possible effects of two flavonoids, astragalin and dihydromyricetin, as adjuncts to histidine‑tryptophan‑ketoglutarate (HTK) cardioplegia. The following three groups of male Sprague Dawley rats were evaluated: The HTK group, treated with HTK alone; the HTK‑A group, treated with 10 µmol/l astragalin; and the HTK‑D group, treated with 10 µmol/l dihydromyricetin. Isolated rat hearts were perfused with Krebs‑Henseleit buffer for 30 min and incubated with the respective cardioplegic solution for 6 h at 4˚C. Subsequently, astragalin or dihydromyricetin was added to the cardioplegic solutions. Following 30 min of reperfusion, the left ventricular developed pressure (LVDP), maximum up/down rate of left ventricular pressure (±dp/dtmax) and heart rate were documented as indices of myocardial function using a physiological recorder. Myocardial infarct size (IS) was estimated using 2,3,5‑triphenyltetrazolium chloride staining. Lactate dehydrogenase (LDH) and creatine kinase (CK) levels were also determined to assess the degree of cardiac injury. Cardiomyocyte apoptosis analysis was performed using an in situ cell death detection kit. In addition, malondialdehyde (MDA), superoxide dismutase (SOD), interleukin‑6 (IL‑6), tumor necrosis factor‑α (TNF‑α), C‑reactive protein (CRP) levels, as well as the glutathione/glutathione disulfide (GSH/GSSG) ratio were determined and analyzed using ELISA kits. The protein levels of caspase‑9 and B‑cell lymphoma‑2 (Bcl‑2) were determined using western blot analysis. The results demonstrated that exposure to astragalin or dihydromyricetin significantly improved the recovery of LVDP (P<0.05 and P<0.01, respectively), the +dP/dtmax (P<0.05 for dihydromyricetin only) and the ‑dP/dtmax (P<0.05 and P<0.01, respectively), increased SOD levels (P<0.05 and P<0.01, respectively) and GSH/GSSG ratios (P<0.05), reduced myocardial IS (P<0.05 and P<0.01, respectively), decreased CK, LDH, IL‑6 (all P<0.05 and P<0.01, respectively), MDA (P<0.05), CRP (P<0.05) and TNF‑α levels (P<0.05 and P<0.01, respectively), increased Bcl‑2 levels (P<0.01) and decreased caspase‑9 levels (P<0.01). The results indicated that the addition of either flavonoid (particularly dihydromyricetin) to HTK enhances protection during ischemia, decreases myocardial dysfunction by enhancing anti‑inflammatory activities, attenuates myocardial oxidative injury and prevents apoptosis during ischemia/reperfusion.