亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Characteristics of Air Pollutants and Greenhouse Gases at a Regional Background Station in Southwestern China

环境科学 温室气体 污染物 空气污染 空气污染物 大气科学 氮氧化物 臭氧 空气污染物标准 环境化学 气候学 气象学 化学 地理 生态学 生物 燃烧 地质学 有机化学
作者
Lijing Cheng,Dongsheng Ji,Jun He,Liang Li,Liuliu Du,Yang Cui,Hongliang Zhang,Luxi Zhou,Zhiqing Li,Yingxin Zhou,Shengyuan Miao,Zhengyu Gong,Yuesi Wang
出处
期刊:Aerosol and Air Quality Research [Taiwan Association for Aerosol Research]
卷期号:19 (5): 1007-1023 被引量:10
标识
DOI:10.4209/aaqr.2018.11.0397
摘要

The characteristics of air pollutants and greenhouse gases at regional background sites are critical to assessing the impact of anthropogenic emissions on the atmospheric environment, ecosystems and climate change. However, observational studies are still scarce at such background sites. In this study, continuous hourly observations of air pollutants (O3, CO, SO2, NOx, PM2.5 and PM10) and greenhouse gases (CO2, CH4 and N2O) were performed for one year (from January 1 to December 31, 2017) at the Gongga Mountain background station (GGS; 101°97′E, 29°55′N; elevation: 3541 m) in southwestern China. The concentrations and variations of these air pollutants and greenhouse gases were determined, and the effect of transboundary atmospheric transport on the air pollution at the study site was investigated. The results showed that the average annual concentrations (mixing ratios) of the O3, CO, SO2, NO2, CO2, CH4, N2O, PM2.5 and PM10 were 74.7 ± 22.0 µg m–3, 0.3 ± 0.2 mg m–3, 0.5 ± 0.6 µg m–3, 1.7 ± 1.3 µg m–3, 406.1 ± 9.5 ppm, 1.941 ± 0.071 ppm, 324.5 ± 14.8 ppb, 6.5 ± 6.2 µg m–3 and 10.6 ± 11.2 µg m–3, respectively. The concentrations (mixing ratios) of the abovementioned substances at the GGS are comparable to those at other background sites in China and around the world. The slight differences among concentrations at different sites may be mainly attributable to the impacts of anthropogenic emissions near the background sites and meteorological conditions. High values of O3 were observed in spring and summer, while SO2 and PM2.5 showed higher concentrations in summer than in autumn. Relatively high CO, NO2 and PM10 values were mostly observed in spring and winter. Relatively low CO2 concentrations were observed in summer due to the vigorous summertime photosynthesis of vegetation. The lowest concentrations for CH4 were recorded in summer, whereas the levels in the other three seasons were similar to each other; by contrast, the highest N2O concentrations were observed in summer due to enhanced microbial activity resulting from high ambient summer temperatures. A diurnal variation in O3 was observed, with early morning minima and afternoon maxima. CO and NO2 displayed higher concentrations in the daytime than in the nighttime. A slight increase in both PM2.5 and PM10 concentrations was also recorded in the daytime. These patterns were closely related to scattered anthropogenic emissions and regional atmospheric transport. Nevertheless, CO2 exhibited lower concentrations in the daytime than in the nighttime, although CH4 showed no obvious diurnal variation. The N2O concentration peaked between 10:00 and 12:00 (local time), which can be ascribed to the enhancement of microbial activity due to the increased soil temperature. The results based on the relationship between the wind and the concentrations of air pollutants and greenhouse gases were almost consistent with those based on the potential contribution source function. It appears that O3 and its precursors in parts of Inner Mongolia and Gansu, Ningxia, Sichuan, Chongqing and Hubei Provinces as well as adjacent areas of Hunan, Guizhou and Guangxi Provinces contributed to the increase in O3 at the study site. The potential source areas for CO and SO2 were similar and mainly distributed in India and Pakistan and areas of Inner Mongolia and Gansu and Guizhou Provinces in China. Potential source areas for NO2, PM2.5 and PM10 were found in neighboring countries of South Asia in addition to domestic regions, including Inner Mongolia, Gansu Province and the Cheng-Yu economic region. Furthermore, parts of Yunnan Province (China) as well as India and Pakistan were potential source areas for CO2, CH4 and N2O.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Criminology34应助科研通管家采纳,获得10
19秒前
Criminology34应助科研通管家采纳,获得10
19秒前
26秒前
lifang完成签到 ,获得积分10
26秒前
天天完成签到,获得积分10
30秒前
44秒前
哈哈哈完成签到,获得积分10
1分钟前
catherine发布了新的文献求助30
1分钟前
爱笑半莲完成签到,获得积分10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
满意外套完成签到 ,获得积分10
1分钟前
凭什么完成签到,获得积分10
1分钟前
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
天天发布了新的文献求助10
2分钟前
2分钟前
jyy完成签到,获得积分10
2分钟前
3分钟前
学生信的大叔完成签到,获得积分10
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
Qing完成签到 ,获得积分10
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
从前的我完成签到 ,获得积分10
4分钟前
Wa1Zh0u发布了新的文献求助10
4分钟前
4分钟前
研友_Zb17ln发布了新的文献求助10
4分钟前
null应助研友_Zb17ln采纳,获得10
4分钟前
5分钟前
SDNUDRUG完成签到,获得积分10
5分钟前
6分钟前
6分钟前
Criminology34应助科研通管家采纳,获得10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5724022
求助须知:如何正确求助?哪些是违规求助? 5283494
关于积分的说明 15299539
捐赠科研通 4872214
什么是DOI,文献DOI怎么找? 2616665
邀请新用户注册赠送积分活动 1566557
关于科研通互助平台的介绍 1523402