Classification of urban morphology with deep learning: Application on urban vitality

计算机科学 人工智能 卷积神经网络 城市形态 活力 深度学习 等级制度 聚类分析 可用性 机器学习 地理 数据挖掘 城市规划 工程类 人机交互 哲学 土木工程 经济 市场经济 神学
作者
Wangyang Chen,Abraham Noah Wu,Filip Biljecki
出处
期刊:Computers, Environment and Urban Systems [Elsevier]
卷期号:90: 101706-101706 被引量:59
标识
DOI:10.1016/j.compenvurbsys.2021.101706
摘要

There is a prevailing trend to study urban morphology quantitatively thanks to the growing accessibility to various forms of spatial big data, increasing computing power, and use cases benefiting from such information. The methods developed up to now measure urban morphology with numerical indices describing density, proportion, and mixture, but they do not directly represent morphological features from the human's visual and intuitive perspective. We take the first step to bridge the gap by proposing a deep learning-based technique to automatically classify road networks into four classes on a visual basis. The method is implemented by generating an image of the street network (Colored Road Hierarchy Diagram), which we introduce in this paper, and classifying it using a deep convolutional neural network (ResNet-34). The model achieves an overall classification accuracy of 0.875. Nine cities around the world are selected as the study areas with their road networks acquired from OpenStreetMap. Latent subgroups among the cities are uncovered through clustering on the percentage of each road network category. In the subsequent part of the paper, we focus on the usability of such classification: we apply our method in a case study of urban vitality prediction. An advanced tree-based regression model (LightGBM) is for the first time designated to establish the relationship between morphological indices and vitality indicators. The effect of road network classification is found to be small but positively associated with urban vitality. This work expands the toolkit of quantitative urban morphology study with new techniques, supporting further studies in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
苏辰发布了新的文献求助10
刚刚
阳光的萃完成签到,获得积分10
刚刚
lili发布了新的文献求助10
1秒前
1秒前
huangyuchen0910完成签到,获得积分20
1秒前
Lucas应助自觉馒头采纳,获得10
3秒前
YEeeeee完成签到 ,获得积分10
3秒前
NexusExplorer应助YXH采纳,获得10
3秒前
mj完成签到,获得积分10
4秒前
哆啦A梦发布了新的文献求助10
5秒前
5秒前
Ramalina完成签到,获得积分10
5秒前
这瓜不卖发布了新的文献求助10
5秒前
Min完成签到,获得积分10
6秒前
6秒前
panxiang发布了新的文献求助10
7秒前
852应助Wang采纳,获得10
7秒前
李健应助Wang采纳,获得10
8秒前
happyboy2008发布了新的文献求助20
8秒前
8秒前
yangching应助GG采纳,获得10
8秒前
英姑应助asdewq2047采纳,获得10
8秒前
单纯的笋完成签到 ,获得积分10
9秒前
9秒前
passion完成签到,获得积分10
9秒前
bkagyin应助我要学习采纳,获得10
10秒前
上官若男应助丹D采纳,获得10
10秒前
10秒前
sltg完成签到,获得积分10
10秒前
lanrete应助清脆的天亦采纳,获得20
11秒前
11秒前
11秒前
可爱的函函应助精明念寒采纳,获得10
11秒前
漂亮蘑菇完成签到,获得积分10
11秒前
酷波er应助成就乌冬面采纳,获得10
12秒前
orixero应助Cici采纳,获得10
13秒前
单纯的笋关注了科研通微信公众号
13秒前
vj完成签到,获得积分10
14秒前
tingsHHH发布了新的文献求助10
14秒前
14秒前
高分求助中
좌파는 어떻게 좌파가 됐나:한국 급진노동운동의 형성과 궤적 2500
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
CLSI EP47 Evaluation of Reagent Carryover Effects on Test Results, 1st Edition 800
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
Retention of title in secured transactions law from a creditor's perspective: A comparative analysis of selected (non-)functional approaches 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3054832
求助须知:如何正确求助?哪些是违规求助? 2711702
关于积分的说明 7427649
捐赠科研通 2356261
什么是DOI,文献DOI怎么找? 1247983
科研通“疑难数据库(出版商)”最低求助积分说明 606566
版权声明 596083